This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcmul.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvcmul.f | |- ( ph -> F : X --> CC ) |
||
| dvcmul.a | |- ( ph -> A e. CC ) |
||
| dvcmulf.df | |- ( ph -> dom ( S _D F ) = X ) |
||
| Assertion | dvcmulf | |- ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( ( S X. { A } ) oF x. ( S _D F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcmul.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvcmul.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvcmul.a | |- ( ph -> A e. CC ) |
|
| 4 | dvcmulf.df | |- ( ph -> dom ( S _D F ) = X ) |
|
| 5 | fconstg | |- ( A e. CC -> ( X X. { A } ) : X --> { A } ) |
|
| 6 | 3 5 | syl | |- ( ph -> ( X X. { A } ) : X --> { A } ) |
| 7 | 3 | snssd | |- ( ph -> { A } C_ CC ) |
| 8 | 6 7 | fssd | |- ( ph -> ( X X. { A } ) : X --> CC ) |
| 9 | c0ex | |- 0 e. _V |
|
| 10 | 9 | fconst | |- ( X X. { 0 } ) : X --> { 0 } |
| 11 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 12 | 1 11 | syl | |- ( ph -> S C_ CC ) |
| 13 | fconstg | |- ( A e. CC -> ( S X. { A } ) : S --> { A } ) |
|
| 14 | 3 13 | syl | |- ( ph -> ( S X. { A } ) : S --> { A } ) |
| 15 | 14 7 | fssd | |- ( ph -> ( S X. { A } ) : S --> CC ) |
| 16 | ssidd | |- ( ph -> S C_ S ) |
|
| 17 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 18 | 17 | a1i | |- ( ph -> dom ( S _D F ) C_ S ) |
| 19 | 4 18 | eqsstrrd | |- ( ph -> X C_ S ) |
| 20 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 21 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 22 | 20 21 | dvres | |- ( ( ( S C_ CC /\ ( S X. { A } ) : S --> CC ) /\ ( S C_ S /\ X C_ S ) ) -> ( S _D ( ( S X. { A } ) |` X ) ) = ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) ) |
| 23 | 12 15 16 19 22 | syl22anc | |- ( ph -> ( S _D ( ( S X. { A } ) |` X ) ) = ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) ) |
| 24 | 19 | resmptd | |- ( ph -> ( ( x e. S |-> A ) |` X ) = ( x e. X |-> A ) ) |
| 25 | fconstmpt | |- ( S X. { A } ) = ( x e. S |-> A ) |
|
| 26 | 25 | reseq1i | |- ( ( S X. { A } ) |` X ) = ( ( x e. S |-> A ) |` X ) |
| 27 | fconstmpt | |- ( X X. { A } ) = ( x e. X |-> A ) |
|
| 28 | 24 26 27 | 3eqtr4g | |- ( ph -> ( ( S X. { A } ) |` X ) = ( X X. { A } ) ) |
| 29 | 28 | oveq2d | |- ( ph -> ( S _D ( ( S X. { A } ) |` X ) ) = ( S _D ( X X. { A } ) ) ) |
| 30 | 19 | resmptd | |- ( ph -> ( ( x e. S |-> 0 ) |` X ) = ( x e. X |-> 0 ) ) |
| 31 | fconstg | |- ( A e. CC -> ( CC X. { A } ) : CC --> { A } ) |
|
| 32 | 3 31 | syl | |- ( ph -> ( CC X. { A } ) : CC --> { A } ) |
| 33 | 32 7 | fssd | |- ( ph -> ( CC X. { A } ) : CC --> CC ) |
| 34 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 35 | dvconst | |- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
|
| 36 | 3 35 | syl | |- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 37 | 36 | dmeqd | |- ( ph -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) |
| 38 | 9 | fconst | |- ( CC X. { 0 } ) : CC --> { 0 } |
| 39 | 38 | fdmi | |- dom ( CC X. { 0 } ) = CC |
| 40 | 37 39 | eqtrdi | |- ( ph -> dom ( CC _D ( CC X. { A } ) ) = CC ) |
| 41 | 12 40 | sseqtrrd | |- ( ph -> S C_ dom ( CC _D ( CC X. { A } ) ) ) |
| 42 | dvres3 | |- ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
|
| 43 | 1 33 34 41 42 | syl22anc | |- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
| 44 | xpssres | |- ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
|
| 45 | 12 44 | syl | |- ( ph -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
| 46 | 45 | oveq2d | |- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
| 47 | 36 | reseq1d | |- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) |
| 48 | xpssres | |- ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
|
| 49 | 12 48 | syl | |- ( ph -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
| 50 | 47 49 | eqtrd | |- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) |
| 51 | 43 46 50 | 3eqtr3d | |- ( ph -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
| 52 | fconstmpt | |- ( S X. { 0 } ) = ( x e. S |-> 0 ) |
|
| 53 | 51 52 | eqtrdi | |- ( ph -> ( S _D ( S X. { A } ) ) = ( x e. S |-> 0 ) ) |
| 54 | 20 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 55 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 56 | 54 12 55 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 57 | topontop | |- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
|
| 58 | 56 57 | syl | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 59 | toponuni | |- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 60 | 56 59 | syl | |- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 61 | 19 60 | sseqtrd | |- ( ph -> X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 62 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
|
| 63 | 62 | ntrss2 | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 64 | 58 61 63 | syl2anc | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 65 | 12 2 19 21 20 | dvbssntr | |- ( ph -> dom ( S _D F ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 66 | 4 65 | eqsstrrd | |- ( ph -> X C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 67 | 64 66 | eqssd | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) = X ) |
| 68 | 53 67 | reseq12d | |- ( ph -> ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) = ( ( x e. S |-> 0 ) |` X ) ) |
| 69 | fconstmpt | |- ( X X. { 0 } ) = ( x e. X |-> 0 ) |
|
| 70 | 69 | a1i | |- ( ph -> ( X X. { 0 } ) = ( x e. X |-> 0 ) ) |
| 71 | 30 68 70 | 3eqtr4d | |- ( ph -> ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) = ( X X. { 0 } ) ) |
| 72 | 23 29 71 | 3eqtr3d | |- ( ph -> ( S _D ( X X. { A } ) ) = ( X X. { 0 } ) ) |
| 73 | 72 | feq1d | |- ( ph -> ( ( S _D ( X X. { A } ) ) : X --> { 0 } <-> ( X X. { 0 } ) : X --> { 0 } ) ) |
| 74 | 10 73 | mpbiri | |- ( ph -> ( S _D ( X X. { A } ) ) : X --> { 0 } ) |
| 75 | 74 | fdmd | |- ( ph -> dom ( S _D ( X X. { A } ) ) = X ) |
| 76 | 1 8 2 75 4 | dvmulf | |- ( ph -> ( S _D ( ( X X. { A } ) oF x. F ) ) = ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) ) |
| 77 | sseqin2 | |- ( X C_ S <-> ( S i^i X ) = X ) |
|
| 78 | 19 77 | sylib | |- ( ph -> ( S i^i X ) = X ) |
| 79 | 78 | mpteq1d | |- ( ph -> ( x e. ( S i^i X ) |-> ( A x. ( F ` x ) ) ) = ( x e. X |-> ( A x. ( F ` x ) ) ) ) |
| 80 | 14 | ffnd | |- ( ph -> ( S X. { A } ) Fn S ) |
| 81 | 2 | ffnd | |- ( ph -> F Fn X ) |
| 82 | 1 19 | ssexd | |- ( ph -> X e. _V ) |
| 83 | eqid | |- ( S i^i X ) = ( S i^i X ) |
|
| 84 | fvconst2g | |- ( ( A e. CC /\ x e. S ) -> ( ( S X. { A } ) ` x ) = A ) |
|
| 85 | 3 84 | sylan | |- ( ( ph /\ x e. S ) -> ( ( S X. { A } ) ` x ) = A ) |
| 86 | eqidd | |- ( ( ph /\ x e. X ) -> ( F ` x ) = ( F ` x ) ) |
|
| 87 | 80 81 1 82 83 85 86 | offval | |- ( ph -> ( ( S X. { A } ) oF x. F ) = ( x e. ( S i^i X ) |-> ( A x. ( F ` x ) ) ) ) |
| 88 | 6 | ffnd | |- ( ph -> ( X X. { A } ) Fn X ) |
| 89 | inidm | |- ( X i^i X ) = X |
|
| 90 | fvconst2g | |- ( ( A e. CC /\ x e. X ) -> ( ( X X. { A } ) ` x ) = A ) |
|
| 91 | 3 90 | sylan | |- ( ( ph /\ x e. X ) -> ( ( X X. { A } ) ` x ) = A ) |
| 92 | 88 81 82 82 89 91 86 | offval | |- ( ph -> ( ( X X. { A } ) oF x. F ) = ( x e. X |-> ( A x. ( F ` x ) ) ) ) |
| 93 | 79 87 92 | 3eqtr4d | |- ( ph -> ( ( S X. { A } ) oF x. F ) = ( ( X X. { A } ) oF x. F ) ) |
| 94 | 93 | oveq2d | |- ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( S _D ( ( X X. { A } ) oF x. F ) ) ) |
| 95 | 78 | mpteq1d | |- ( ph -> ( x e. ( S i^i X ) |-> ( A x. ( ( S _D F ) ` x ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 96 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 97 | 1 96 | syl | |- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 98 | 4 | feq2d | |- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 99 | 97 98 | mpbid | |- ( ph -> ( S _D F ) : X --> CC ) |
| 100 | 99 | ffnd | |- ( ph -> ( S _D F ) Fn X ) |
| 101 | eqidd | |- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) = ( ( S _D F ) ` x ) ) |
|
| 102 | 80 100 1 82 83 85 101 | offval | |- ( ph -> ( ( S X. { A } ) oF x. ( S _D F ) ) = ( x e. ( S i^i X ) |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 103 | 0cnd | |- ( ( ph /\ x e. X ) -> 0 e. CC ) |
|
| 104 | ovexd | |- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) e. _V ) |
|
| 105 | 72 | oveq1d | |- ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( ( X X. { 0 } ) oF x. F ) ) |
| 106 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 107 | mul02 | |- ( x e. CC -> ( 0 x. x ) = 0 ) |
|
| 108 | 107 | adantl | |- ( ( ph /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
| 109 | 82 2 106 106 108 | caofid2 | |- ( ph -> ( ( X X. { 0 } ) oF x. F ) = ( X X. { 0 } ) ) |
| 110 | 105 109 | eqtrd | |- ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( X X. { 0 } ) ) |
| 111 | 110 69 | eqtrdi | |- ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( x e. X |-> 0 ) ) |
| 112 | fvexd | |- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) |
|
| 113 | 3 | adantr | |- ( ( ph /\ x e. X ) -> A e. CC ) |
| 114 | 99 | feqmptd | |- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
| 115 | 27 | a1i | |- ( ph -> ( X X. { A } ) = ( x e. X |-> A ) ) |
| 116 | 82 112 113 114 115 | offval2 | |- ( ph -> ( ( S _D F ) oF x. ( X X. { A } ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. A ) ) ) |
| 117 | 82 103 104 111 116 | offval2 | |- ( ph -> ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) = ( x e. X |-> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) ) ) |
| 118 | 99 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. CC ) |
| 119 | 118 113 | mulcld | |- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) e. CC ) |
| 120 | 119 | addlidd | |- ( ( ph /\ x e. X ) -> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) = ( ( ( S _D F ) ` x ) x. A ) ) |
| 121 | 118 113 | mulcomd | |- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) = ( A x. ( ( S _D F ) ` x ) ) ) |
| 122 | 120 121 | eqtrd | |- ( ( ph /\ x e. X ) -> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) = ( A x. ( ( S _D F ) ` x ) ) ) |
| 123 | 122 | mpteq2dva | |- ( ph -> ( x e. X |-> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 124 | 117 123 | eqtrd | |- ( ph -> ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 125 | 95 102 124 | 3eqtr4d | |- ( ph -> ( ( S X. { A } ) oF x. ( S _D F ) ) = ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) ) |
| 126 | 76 94 125 | 3eqtr4d | |- ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( ( S X. { A } ) oF x. ( S _D F ) ) ) |