This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconstg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) | |
| 2 | 1 | xpeq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 × { 𝑥 } ) = ( 𝐴 × { 𝐵 } ) ) |
| 3 | feq1 | ⊢ ( ( 𝐴 × { 𝑥 } ) = ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝑥 } ) ) | |
| 4 | feq3 | ⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) ) | |
| 5 | 3 4 | sylan9bb | ⊢ ( ( ( 𝐴 × { 𝑥 } ) = ( 𝐴 × { 𝐵 } ) ∧ { 𝑥 } = { 𝐵 } ) → ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) ) |
| 6 | 2 1 5 | syl2anc | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | fconst | ⊢ ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } |
| 9 | 6 8 | vtoclg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) |