This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvaddf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvaddf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvaddf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| dvaddf.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvaddf.dg | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | ||
| Assertion | dvmulf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvaddf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvaddf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 4 | dvaddf.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 5 | dvaddf.dg | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 7 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 8 | 4 7 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 12 | 4 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 13 | 12 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) |
| 14 | 5 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 15 | 14 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ) |
| 16 | 6 9 10 9 11 13 15 | dvmul | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) = ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 17 | 16 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 18 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ) | |
| 19 | 1 18 | syl | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ) |
| 20 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 21 | 1 20 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 22 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 24 | 1 8 | ssexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 25 | inidm | ⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 | |
| 26 | 23 2 3 24 24 25 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 27 | 21 26 8 | dvbss | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⊆ 𝑋 ) |
| 28 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ⊆ ℂ ) |
| 29 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 30 | 1 29 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 32 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 33 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) | |
| 34 | 31 32 33 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 35 | 13 34 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
| 36 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) | |
| 37 | 1 36 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 39 | ffun | ⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) | |
| 40 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) | |
| 41 | 38 39 40 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 42 | 15 41 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
| 43 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 44 | 6 9 10 9 28 35 42 43 | dvmulbr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 45 | reldv | ⊢ Rel ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) | |
| 46 | 45 | releldmi | ⊢ ( 𝑥 ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ) |
| 47 | 44 46 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ) |
| 48 | 27 47 | eqelssd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = 𝑋 ) |
| 49 | 48 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : 𝑋 ⟶ ℂ ) ) |
| 50 | 19 49 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : 𝑋 ⟶ ℂ ) |
| 51 | 50 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) ) ) |
| 52 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ V ) | |
| 53 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ V ) | |
| 54 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ V ) | |
| 55 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) | |
| 56 | 4 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 57 | 30 56 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 58 | 57 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 59 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 60 | 24 54 55 58 59 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 61 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ V ) | |
| 62 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) | |
| 63 | 5 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 64 | 37 63 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 65 | 64 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 66 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 | 24 61 62 65 66 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 68 | 24 52 53 60 67 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 69 | 17 51 68 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ) |