This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvconst | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6g | ⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) | |
| 2 | simpr2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → 𝑧 ∈ ℂ ) | |
| 3 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) = 𝐴 ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) = 𝐴 ) |
| 5 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) | |
| 6 | 5 | 3ad2antr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 7 | 4 6 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) = ( 𝐴 − 𝐴 ) ) |
| 8 | subid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 𝐴 ) = 0 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 𝐴 − 𝐴 ) = 0 ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) = 0 ) |
| 11 | 10 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( 0 / ( 𝑧 − 𝑥 ) ) ) |
| 12 | simpr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → 𝑥 ∈ ℂ ) | |
| 13 | 2 12 | subcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
| 14 | simpr3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → 𝑧 ≠ 𝑥 ) | |
| 15 | 2 12 14 | subne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 𝑧 − 𝑥 ) ≠ 0 ) |
| 16 | 13 15 | div0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 0 / ( 𝑧 − 𝑥 ) ) = 0 ) |
| 17 | 11 16 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 0 ) |
| 18 | 0cn | ⊢ 0 ∈ ℂ | |
| 19 | 1 17 18 | dvidlem | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |