This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 8-Apr-2001) (Proof shortened by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sq11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 3 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 5 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | recnd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 𝐵 ∈ ℂ ) |
| 7 | sqval | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 9 | 4 8 | eqeqan12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ) ) |
| 10 | msq11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 11 | 9 10 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) ) |