This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 2 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 3 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 5 | 1 2 4 | adddird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) = ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
| 7 | 1 4 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 8 | 2 4 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 9 | efadd | ⊢ ( ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
| 12 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 13 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ≠ 0 ) | |
| 14 | addcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) | |
| 15 | 14 | 3adant1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 16 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) ) | |
| 17 | 12 13 15 16 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) ) |
| 18 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 19 | 12 13 1 18 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 20 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) | |
| 21 | 12 13 2 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
| 22 | 19 21 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
| 23 | 11 17 22 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |