This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two halves make a whole. (Contributed by NM, 11-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2halves | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times | ⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = ( ( 𝐴 + 𝐴 ) / 2 ) ) |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 2ne0 | ⊢ 2 ≠ 0 | |
| 5 | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) | |
| 6 | 3 4 5 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
| 7 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 8 | divdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) | |
| 9 | 7 8 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
| 10 | 9 | anidms | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
| 11 | 2 6 10 | 3eqtr3rd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |