This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cxp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 ↑𝑐 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | cxpval | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 0 ↑𝑐 𝐴 ) = if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 0 ↑𝑐 𝐴 ) = if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) ) |
| 4 | eqid | ⊢ 0 = 0 | |
| 5 | 4 | iftruei | ⊢ if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) = if ( 𝐴 = 0 , 1 , 0 ) |
| 6 | 3 5 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 0 ↑𝑐 𝐴 ) = if ( 𝐴 = 0 , 1 , 0 ) ) |
| 7 | ifnefalse | ⊢ ( 𝐴 ≠ 0 → if ( 𝐴 = 0 , 1 , 0 ) = 0 ) | |
| 8 | 6 7 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 ↑𝑐 𝐴 ) = 0 ) |