This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cxpsqrt . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpsqrtlem | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | sqrtcl | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 5 | 1 3 4 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ) |
| 6 | imval | ⊢ ( ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ → ( ℑ ‘ ( i · ( √ ‘ 𝐴 ) ) ) = ( ℜ ‘ ( ( i · ( √ ‘ 𝐴 ) ) / i ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℑ ‘ ( i · ( √ ‘ 𝐴 ) ) ) = ( ℜ ‘ ( ( i · ( √ ‘ 𝐴 ) ) / i ) ) ) |
| 8 | ine0 | ⊢ i ≠ 0 | |
| 9 | divcan3 | ⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · ( √ ‘ 𝐴 ) ) / i ) = ( √ ‘ 𝐴 ) ) | |
| 10 | 1 8 9 | mp3an23 | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℂ → ( ( i · ( √ ‘ 𝐴 ) ) / i ) = ( √ ‘ 𝐴 ) ) |
| 11 | 3 10 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) / i ) = ( √ ‘ 𝐴 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( i · ( √ ‘ 𝐴 ) ) / i ) ) = ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
| 13 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 14 | 13 | recni | ⊢ ( 1 / 2 ) ∈ ℂ |
| 15 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 16 | mulcl | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ∈ ℂ ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 18 | 17 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 19 | 18 | reefcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 20 | 17 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 21 | 20 | recoscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 22 | 18 | rpefcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℝ+ ) |
| 23 | 22 | rpge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) |
| 24 | immul2 | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( ( 1 / 2 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 25 | 13 15 24 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( ( 1 / 2 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 26 | 15 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 27 | 26 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 28 | mulcom | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( ( 1 / 2 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) · ( 1 / 2 ) ) ) | |
| 29 | 14 27 28 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 2 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) · ( 1 / 2 ) ) ) |
| 30 | 25 29 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) · ( 1 / 2 ) ) ) |
| 31 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 32 | 31 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 33 | pire | ⊢ π ∈ ℝ | |
| 34 | 33 | renegcli | ⊢ - π ∈ ℝ |
| 35 | ltle | ⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 36 | 34 26 35 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 37 | 32 36 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 38 | 31 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 39 | 34 33 | elicc2i | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π [,] π ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 40 | 26 37 38 39 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π [,] π ) ) |
| 41 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 42 | 13 41 | elrpii | ⊢ ( 1 / 2 ) ∈ ℝ+ |
| 43 | 33 | recni | ⊢ π ∈ ℂ |
| 44 | 2cn | ⊢ 2 ∈ ℂ | |
| 45 | 2ne0 | ⊢ 2 ≠ 0 | |
| 46 | divneg | ⊢ ( ( π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( π / 2 ) = ( - π / 2 ) ) | |
| 47 | 43 44 45 46 | mp3an | ⊢ - ( π / 2 ) = ( - π / 2 ) |
| 48 | 34 | recni | ⊢ - π ∈ ℂ |
| 49 | 48 44 45 | divreci | ⊢ ( - π / 2 ) = ( - π · ( 1 / 2 ) ) |
| 50 | 47 49 | eqtr2i | ⊢ ( - π · ( 1 / 2 ) ) = - ( π / 2 ) |
| 51 | 43 44 45 | divreci | ⊢ ( π / 2 ) = ( π · ( 1 / 2 ) ) |
| 52 | 51 | eqcomi | ⊢ ( π · ( 1 / 2 ) ) = ( π / 2 ) |
| 53 | 34 33 42 50 52 | iccdili | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π [,] π ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) · ( 1 / 2 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 54 | 40 53 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) · ( 1 / 2 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 55 | 30 54 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 56 | cosq14ge0 | ⊢ ( ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) |
| 58 | 19 21 23 57 | mulge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) |
| 59 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) | |
| 60 | 14 59 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) |
| 61 | efeul | ⊢ ( ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) | |
| 62 | 17 61 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 63 | 60 62 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ℜ ‘ ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) ) |
| 65 | 21 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 66 | 20 | resincld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 67 | 66 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 68 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) | |
| 69 | 1 67 68 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 70 | 65 69 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ∈ ℂ ) |
| 71 | 19 70 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) ) |
| 72 | 21 66 | crred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) = ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) |
| 73 | 72 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) |
| 74 | 64 71 73 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ( exp ‘ ( ℜ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) · ( cos ‘ ( ℑ ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) ) ) |
| 75 | 58 74 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( ℜ ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
| 77 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) | |
| 78 | 77 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ℜ ‘ - ( √ ‘ 𝐴 ) ) ) |
| 79 | 3 | renegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ - ( √ ‘ 𝐴 ) ) = - ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
| 80 | 78 79 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = - ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
| 81 | 76 80 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 ≤ - ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
| 82 | 3 | recld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 83 | 82 | le0neg1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( ℜ ‘ ( √ ‘ 𝐴 ) ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 84 | 81 83 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ ( √ ‘ 𝐴 ) ) ≤ 0 ) |
| 85 | sqrtrege0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) | |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
| 87 | 0re | ⊢ 0 ∈ ℝ | |
| 88 | letri3 | ⊢ ( ( ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ ( √ ‘ 𝐴 ) ) = 0 ↔ ( ( ℜ ‘ ( √ ‘ 𝐴 ) ) ≤ 0 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) ) ) | |
| 89 | 82 87 88 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( ℜ ‘ ( √ ‘ 𝐴 ) ) = 0 ↔ ( ( ℜ ‘ ( √ ‘ 𝐴 ) ) ≤ 0 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 90 | 84 86 89 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℜ ‘ ( √ ‘ 𝐴 ) ) = 0 ) |
| 91 | 7 12 90 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ℑ ‘ ( i · ( √ ‘ 𝐴 ) ) ) = 0 ) |
| 92 | 5 91 | reim0bd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℝ ) |