This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logsqrt | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 2ne0 | ⊢ 2 ≠ 0 | |
| 5 | divrec2 | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( log ‘ 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) | |
| 6 | 3 4 5 | mp3an23 | ⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( ( log ‘ 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
| 8 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 9 | logcxp | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) | |
| 10 | 8 9 | mpan2 | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
| 11 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 12 | cxpsqrt | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( log ‘ ( √ ‘ 𝐴 ) ) ) |
| 15 | 7 10 14 | 3eqtr2rd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) / 2 ) ) |