This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of _ipi / 2 is i . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efhalfpi | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | halfcl | ⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) | |
| 3 | efival | ⊢ ( ( π / 2 ) ∈ ℂ → ( exp ‘ ( i · ( π / 2 ) ) ) = ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) |
| 5 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 6 | sinhalfpi | ⊢ ( sin ‘ ( π / 2 ) ) = 1 | |
| 7 | 6 | oveq2i | ⊢ ( i · ( sin ‘ ( π / 2 ) ) ) = ( i · 1 ) |
| 8 | ax-icn | ⊢ i ∈ ℂ | |
| 9 | 8 | mulridi | ⊢ ( i · 1 ) = i |
| 10 | 7 9 | eqtri | ⊢ ( i · ( sin ‘ ( π / 2 ) ) ) = i |
| 11 | 5 10 | oveq12i | ⊢ ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) = ( 0 + i ) |
| 12 | 8 | addlidi | ⊢ ( 0 + i ) = i |
| 13 | 11 12 | eqtri | ⊢ ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) = i |
| 14 | 4 13 | eqtri | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i |