This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014) (Revised by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logneg | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | picn | ⊢ π ∈ ℂ | |
| 5 | 3 4 | mulcli | ⊢ ( i · π ) ∈ ℂ |
| 6 | efadd | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) ) | |
| 7 | 2 5 6 | sylancl | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) ) |
| 8 | efipi | ⊢ ( exp ‘ ( i · π ) ) = - 1 | |
| 9 | 8 | oveq2i | ⊢ ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · - 1 ) |
| 10 | reeflog | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) · - 1 ) = ( 𝐴 · - 1 ) ) |
| 12 | 9 11 | eqtrid | ⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) = ( 𝐴 · - 1 ) ) |
| 13 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 14 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 15 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
| 17 | 13 | mulm1d | ⊢ ( 𝐴 ∈ ℝ+ → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 18 | 16 17 | eqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · - 1 ) = - 𝐴 ) |
| 19 | 7 12 18 | 3eqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = - 𝐴 ) |
| 20 | 19 | fveq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) = ( log ‘ - 𝐴 ) ) |
| 21 | addcl | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ℂ ) | |
| 22 | 2 5 21 | sylancl | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ℂ ) |
| 23 | pipos | ⊢ 0 < π | |
| 24 | pire | ⊢ π ∈ ℝ | |
| 25 | lt0neg2 | ⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) | |
| 26 | 24 25 | ax-mp | ⊢ ( 0 < π ↔ - π < 0 ) |
| 27 | 23 26 | mpbi | ⊢ - π < 0 |
| 28 | 24 | renegcli | ⊢ - π ∈ ℝ |
| 29 | 0re | ⊢ 0 ∈ ℝ | |
| 30 | 28 29 24 | lttri | ⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
| 31 | 27 23 30 | mp2an | ⊢ - π < π |
| 32 | crim | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = π ) | |
| 33 | 1 24 32 | sylancl | ⊢ ( 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = π ) |
| 34 | 31 33 | breqtrrid | ⊢ ( 𝐴 ∈ ℝ+ → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) |
| 35 | 24 | leidi | ⊢ π ≤ π |
| 36 | 33 35 | eqbrtrdi | ⊢ ( 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ≤ π ) |
| 37 | ellogrn | ⊢ ( ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ≤ π ) ) | |
| 38 | 22 34 36 37 | syl3anbrc | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ran log ) |
| 39 | logef | ⊢ ( ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) |
| 41 | 20 40 | eqtr3d | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) |