This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | 0cn | ⊢ 0 ∈ ℂ | |
| 4 | 2 3 | ifcli | ⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ ℂ |
| 5 | 4 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐴 = 0 ) → if ( 𝐵 = 0 , 1 , 0 ) ∈ ℂ ) |
| 6 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 7 | id | ⊢ ( 𝐵 ∈ ℂ → 𝐵 ∈ ℂ ) | |
| 8 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) | |
| 10 | 7 8 9 | syl2anr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 11 | 10 | an32s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 12 | efcl | ⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 14 | 6 13 | sylan2br | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ¬ 𝐴 = 0 ) → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 15 | 5 14 | ifclda | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 16 | 1 15 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |