This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) | |
| crctcshwlkn0lem.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| crctcshwlkn0lem.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcshwlkn0lem.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcshwlkn0lem.f | ⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) | ||
| crctcshwlkn0lem.p | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | ||
| crctcshwlkn0lem.e | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) | ||
| Assertion | crctcshwlkn0lem7 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) | |
| 2 | crctcshwlkn0lem.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 3 | crctcshwlkn0lem.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 4 | crctcshwlkn0lem.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcshwlkn0lem.f | ⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) | |
| 6 | crctcshwlkn0lem.p | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | |
| 7 | crctcshwlkn0lem.e | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) | |
| 8 | 1 2 3 4 5 6 | crctcshwlkn0lem4 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 9 | eqidd | ⊢ ( 𝜑 → ( 𝑁 − 𝑆 ) = ( 𝑁 − 𝑆 ) ) | |
| 10 | 1 2 3 4 5 6 7 | crctcshwlkn0lem6 | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 𝑆 ) = ( 𝑁 − 𝑆 ) ) → if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) |
| 11 | 9 10 | mpdan | ⊢ ( 𝜑 → if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) |
| 12 | ovex | ⊢ ( 𝑁 − 𝑆 ) ∈ V | |
| 13 | wkslem1 | ⊢ ( 𝑗 = ( 𝑁 − 𝑆 ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) ) | |
| 14 | 12 13 | ralsn | ⊢ ( ∀ 𝑗 ∈ { ( 𝑁 − 𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) |
| 15 | 11 14 | sylibr | ⊢ ( 𝜑 → ∀ 𝑗 ∈ { ( 𝑁 − 𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 16 | ralunb | ⊢ ( ∀ 𝑗 ∈ ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ∧ ∀ 𝑗 ∈ { ( 𝑁 − 𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) | |
| 17 | 8 15 16 | sylanbrc | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 18 | elfzo1 | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) | |
| 19 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 20 | nnz | ⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℤ ) | |
| 21 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) | |
| 22 | 19 20 21 | syl2anr | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
| 24 | nnre | ⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℝ ) | |
| 25 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 26 | posdif | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑆 < 𝑁 ↔ 0 < ( 𝑁 − 𝑆 ) ) ) | |
| 27 | 0re | ⊢ 0 ∈ ℝ | |
| 28 | resubcl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( 𝑁 − 𝑆 ) ∈ ℝ ) | |
| 29 | 28 | ancoms | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑁 − 𝑆 ) ∈ ℝ ) |
| 30 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑁 − 𝑆 ) ∈ ℝ ) → ( 0 < ( 𝑁 − 𝑆 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 31 | 27 29 30 | sylancr | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < ( 𝑁 − 𝑆 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 32 | 26 31 | sylbid | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑆 < 𝑁 → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 33 | 24 25 32 | syl2an | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 < 𝑁 → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 34 | 33 | 3impia | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) |
| 35 | elnn0z | ⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ0 ↔ ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 36 | 23 34 35 | sylanbrc | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ℕ0 ) |
| 37 | elnn0uz | ⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ0 ↔ ( 𝑁 − 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 38 | 36 37 | sylib | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 39 | fzosplitsn | ⊢ ( ( 𝑁 − 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
| 41 | 18 40 | sylbi | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
| 42 | 1 41 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
| 43 | 17 42 | raleqtrrdv | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 44 | 1 2 3 4 5 6 | crctcshwlkn0lem5 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 45 | ralunb | ⊢ ( ∀ 𝑗 ∈ ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ∧ ∀ 𝑗 ∈ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) | |
| 46 | 43 44 45 | sylanbrc | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 47 | nnsub | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 < 𝑁 ↔ ( 𝑁 − 𝑆 ) ∈ ℕ ) ) | |
| 48 | 47 | biimp3a | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ℕ ) |
| 49 | nnnn0 | ⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ → ( 𝑁 − 𝑆 ) ∈ ℕ0 ) | |
| 50 | peano2nn0 | ⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ0 → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ℕ0 ) | |
| 51 | 48 49 50 | 3syl | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ℕ0 ) |
| 52 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 54 | 25 | anim1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ ) → ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ ) ) |
| 55 | 54 | ancoms | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ ) ) |
| 56 | crctcshwlkn0lem1 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) |
| 58 | 57 | 3adant3 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) |
| 59 | elfz2nn0 | ⊢ ( ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) ) | |
| 60 | 51 53 58 59 | syl3anbrc | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 61 | 18 60 | sylbi | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 62 | fzosplit | ⊢ ( ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) ) | |
| 63 | 1 61 62 | 3syl | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) ) |
| 64 | 46 63 | raleqtrrdv | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |