This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) | |
| crctcshwlkn0lem.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| crctcshwlkn0lem.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcshwlkn0lem.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcshwlkn0lem.f | ⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) | ||
| crctcshwlkn0lem.p | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | ||
| Assertion | crctcshwlkn0lem4 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) | |
| 2 | crctcshwlkn0lem.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 3 | crctcshwlkn0lem.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 4 | crctcshwlkn0lem.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcshwlkn0lem.f | ⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) | |
| 6 | crctcshwlkn0lem.p | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | |
| 7 | elfzoelz | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℤ ) | |
| 8 | 7 | zcnd | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℂ ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ℂ ) |
| 10 | elfzoelz | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) | |
| 11 | 10 | zcnd | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℂ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑆 ∈ ℂ ) |
| 13 | 1cnd | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 1 ∈ ℂ ) | |
| 14 | 9 12 13 | add32d | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) |
| 15 | elfzo1 | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) | |
| 16 | elfzonn0 | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℕ0 ) | |
| 17 | nnnn0 | ⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℕ0 ) | |
| 18 | nn0addcl | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ℕ0 ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) | |
| 19 | 18 | ex | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ℕ0 → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 20 | 16 17 19 | syl2imc | ⊢ ( 𝑆 ∈ ℕ → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 22 | 15 21 | sylbi | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 24 | fzo0ss1 | ⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) | |
| 25 | 24 | sseli | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
| 26 | elfzo0 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) | |
| 27 | 26 | simp2bi | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 28 | 25 27 | syl | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 29 | 28 | adantr | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑁 ∈ ℕ ) |
| 30 | elfzo0 | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ↔ ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) ) | |
| 31 | nn0re | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℝ ) | |
| 32 | nnre | ⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℝ ) | |
| 33 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 34 | 32 33 | anim12i | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 35 | 34 | 3adant3 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 36 | 15 35 | sylbi | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 37 | 31 36 | anim12i | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 38 | 3anass | ⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ↔ ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 40 | ltaddsub | ⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ 𝑗 < ( 𝑁 − 𝑆 ) ) ) | |
| 41 | 40 | bicomd | ⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 42 | 39 41 | syl | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 43 | 42 | biimpd | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 44 | 43 | ex | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) |
| 45 | 44 | com23 | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) |
| 46 | 45 | a1d | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑁 − 𝑆 ) ∈ ℕ → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) ) |
| 47 | 46 | 3imp | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 48 | 30 47 | sylbi | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 49 | 48 | impcom | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) < 𝑁 ) |
| 50 | elfzo0 | ⊢ ( ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( 𝑗 + 𝑆 ) < 𝑁 ) ) | |
| 51 | 23 29 49 50 | syl3anbrc | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 53 | fveq2 | ⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) | |
| 54 | 53 | adantl | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 55 | fvoveq1 | ⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) ) | |
| 56 | simpr | ⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) | |
| 57 | 56 | fveq2d | ⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 58 | 55 57 | sylan9eqr | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 59 | 54 58 | eqeq12d | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) ) |
| 60 | 2fveq3 | ⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) | |
| 61 | 53 | sneqd | ⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → { ( 𝑃 ‘ 𝑖 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) |
| 62 | 60 61 | eqeq12d | ⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
| 63 | 62 | adantl | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
| 64 | 54 58 | preq12d | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ) |
| 65 | 60 | adantl | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
| 66 | 64 65 | sseq12d | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
| 67 | 59 63 66 | ifpbi123d | ⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 68 | 52 67 | rspcdv | ⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 69 | 14 68 | mpdan | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 70 | 1 69 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 71 | 70 | ex | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) ) |
| 72 | 6 71 | mpid | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 73 | 72 | imp | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
| 74 | elfzofz | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) | |
| 75 | 1 2 | crctcshwlkn0lem2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 76 | 74 75 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 77 | fzofzp1 | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) | |
| 78 | 1 2 | crctcshwlkn0lem2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 79 | 77 78 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 80 | 3 | fveq1i | ⊢ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) |
| 81 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝐹 ∈ Word 𝐴 ) |
| 82 | 1 10 | syl | ⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑆 ∈ ℤ ) |
| 84 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 85 | 84 | adantl | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 86 | nnz | ⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℤ ) | |
| 87 | 86 | adantr | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ℤ ) |
| 88 | 85 87 | zsubcld | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
| 89 | 17 | nn0ge0d | ⊢ ( 𝑆 ∈ ℕ → 0 ≤ 𝑆 ) |
| 90 | 89 | adantr | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑆 ) |
| 91 | subge02 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) | |
| 92 | 33 32 91 | syl2anr | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 93 | 90 92 | mpbid | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ≤ 𝑁 ) |
| 94 | 88 85 93 | 3jca | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 95 | 94 | 3adant3 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 96 | 15 95 | sylbi | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 97 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) ↔ ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) | |
| 98 | 96 97 | sylibr | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) ) |
| 99 | fzoss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) → ( 0 ..^ ( 𝑁 − 𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) ) | |
| 100 | 1 98 99 | 3syl | ⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 − 𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 101 | 100 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
| 102 | 4 | oveq2i | ⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 103 | 101 102 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 104 | cshwidxmod | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 105 | 81 83 103 104 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 106 | 4 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 107 | 106 | oveq2i | ⊢ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod 𝑁 ) |
| 108 | 21 | imp | ⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 109 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 110 | 109 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 111 | 110 | adantr | ⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 112 | 31 35 | anim12i | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 113 | 112 38 | sylibr | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 114 | 113 41 | syl | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 115 | 17 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ∈ ℕ0 ) |
| 116 | 115 18 | sylan2 | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 117 | 116 | nn0zd | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
| 118 | 84 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑁 ∈ ℤ ) |
| 119 | 118 | adantl | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 120 | zltlem1 | ⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) | |
| 121 | 117 119 120 | syl2anc | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 122 | 121 | biimpd | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 123 | 114 122 | sylbid | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 124 | 123 | impancom | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 125 | 124 | 3adant2 | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 126 | 30 125 | sylbi | ⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 127 | 126 | impcom | ⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) |
| 128 | 108 111 127 | 3jca | ⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 129 | 15 128 | sylanb | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 130 | elfz2nn0 | ⊢ ( ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) | |
| 131 | 129 130 | sylibr | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 132 | zaddcl | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) | |
| 133 | 7 10 132 | syl2anr | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
| 134 | zmodid2 | ⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) | |
| 135 | 133 29 134 | syl2anc | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 136 | 131 135 | mpbird | ⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ) |
| 137 | 1 136 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ) |
| 138 | 107 137 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( 𝑗 + 𝑆 ) ) |
| 139 | 138 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 140 | 105 139 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 141 | 80 140 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 142 | 141 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
| 143 | simp1 | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) | |
| 144 | simp2 | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) | |
| 145 | 143 144 | eqeq12d | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) ) |
| 146 | simp3 | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) | |
| 147 | 143 | sneqd | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄 ‘ 𝑗 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) |
| 148 | 146 147 | eqeq12d | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
| 149 | 143 144 | preq12d | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ) |
| 150 | 149 146 | sseq12d | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
| 151 | 145 148 150 | ifpbi123d | ⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 152 | 76 79 142 151 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 153 | 73 152 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 154 | 153 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |