This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a walk <. H , Q >. . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| Assertion | crctcshwlkn0 | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 8 | crctiswlk | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 | cshwcl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 cyclShift 𝑆 ) ∈ Word dom 𝐼 ) | |
| 11 | 3 8 9 10 | 4syl | ⊢ ( 𝜑 → ( 𝐹 cyclShift 𝑆 ) ∈ Word dom 𝐼 ) |
| 12 | 6 11 | eqeltrid | ⊢ ( 𝜑 → 𝐻 ∈ Word dom 𝐼 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ∈ Word dom 𝐼 ) |
| 14 | 3 8 | syl | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 15 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 16 | simpll | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | |
| 17 | elfznn0 | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℕ0 ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ∈ ℕ0 ) |
| 19 | elfzonn0 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℕ0 ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ ℕ0 ) |
| 21 | 18 20 | nn0addcld | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) ∈ ℕ0 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ∈ ℕ0 ) |
| 23 | elfz3nn0 | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 24 | 4 23 | eqeltrrid | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 26 | elfzelz | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 27 | 26 | zred | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
| 28 | 27 | adantl | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 29 | elfzoelz | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) | |
| 30 | 29 | zred | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℝ ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ ℝ ) |
| 32 | elfzel2 | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 33 | 32 | zred | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℝ ) |
| 34 | 33 | adantl | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 35 | leaddsub | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑥 + 𝑆 ) ≤ 𝑁 ↔ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 36 | 28 31 34 35 | syl3anc | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑥 + 𝑆 ) ≤ 𝑁 ↔ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 37 | 36 | biimpar | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ≤ 𝑁 ) |
| 38 | 37 4 | breqtrdi | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 39 | 22 25 38 | 3jca | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 40 | 5 39 | sylanl1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 41 | elfz2nn0 | ⊢ ( ( 𝑥 + 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( ( 𝑥 + 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 43 | 42 | adantll | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 44 | 16 43 | ffvelcdmd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) ∈ 𝑉 ) |
| 45 | simpll | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | |
| 46 | elfzoel2 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 47 | zaddcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑥 + 𝑆 ) ∈ ℤ ) | |
| 48 | 47 | adantrr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑥 + 𝑆 ) ∈ ℤ ) |
| 49 | simprr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) | |
| 50 | 48 49 | zsubcld | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ) |
| 52 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) | |
| 53 | 52 | ancoms | ⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
| 54 | 53 | zred | ⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℝ ) |
| 55 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 56 | ltnle | ⊢ ( ( ( 𝑁 − 𝑆 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 57 | 54 55 56 | syl2anr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 58 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 60 | zre | ⊢ ( 𝑆 ∈ ℤ → 𝑆 ∈ ℝ ) | |
| 61 | 60 | adantr | ⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑆 ∈ ℝ ) |
| 62 | 55 | adantr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑥 ∈ ℝ ) |
| 63 | ltsubadd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ 𝑁 < ( 𝑥 + 𝑆 ) ) ) | |
| 64 | 59 61 62 63 | syl2an23an | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ 𝑁 < ( 𝑥 + 𝑆 ) ) ) |
| 65 | 59 | adantl | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℝ ) |
| 66 | 48 | zred | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑥 + 𝑆 ) ∈ ℝ ) |
| 67 | 65 66 | posdifd | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 < ( 𝑥 + 𝑆 ) ↔ 0 < ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 68 | 0red | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 0 ∈ ℝ ) | |
| 69 | 50 | zred | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℝ ) |
| 70 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℝ ) → ( 0 < ( ( 𝑥 + 𝑆 ) − 𝑁 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) | |
| 71 | 68 69 70 | syl2anc | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 0 < ( ( 𝑥 + 𝑆 ) − 𝑁 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 72 | 67 71 | sylbid | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 < ( 𝑥 + 𝑆 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 73 | 64 72 | sylbid | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 − 𝑆 ) < 𝑥 → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 74 | 57 73 | sylbird | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 75 | 74 | imp | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) |
| 76 | 51 75 | jca | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 77 | 76 | exp31 | ⊢ ( 𝑥 ∈ ℤ → ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ) |
| 78 | 77 26 | syl11 | ⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ) |
| 79 | 29 46 78 | syl2anc | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ) |
| 80 | 79 | imp31 | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
| 81 | elnn0z | ⊢ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ↔ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) | |
| 82 | 80 81 | sylibr | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ) |
| 83 | 24 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 84 | elfzo0 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) | |
| 85 | elfz2nn0 | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) | |
| 86 | nn0re | ⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ ) | |
| 87 | 86 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ∈ ℝ ) |
| 88 | nn0re | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ ) | |
| 89 | 88 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) → 𝑥 ∈ ℝ ) |
| 90 | 87 89 | anim12ci | ⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ) |
| 91 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 92 | 91 91 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 93 | 92 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 95 | 90 94 | jca | ⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 96 | simpr3 | ⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → 𝑥 ≤ 𝑁 ) | |
| 97 | ltle | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑆 < 𝑁 → 𝑆 ≤ 𝑁 ) ) | |
| 98 | 86 91 97 | syl2an | ⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 < 𝑁 → 𝑆 ≤ 𝑁 ) ) |
| 99 | 98 | 3impia | ⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ≤ 𝑁 ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → 𝑆 ≤ 𝑁 ) |
| 101 | 95 96 100 | jca32 | ⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) ) ) |
| 102 | 84 85 101 | syl2anb | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) ) ) |
| 103 | le2add | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) → ( ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) → ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) ) | |
| 104 | 103 | imp | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) ) → ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) |
| 105 | 102 104 | syl | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) |
| 106 | 66 65 65 | 3jca | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 107 | 106 | ex | ⊢ ( 𝑥 ∈ ℤ → ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 108 | 107 26 | syl11 | ⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 109 | 29 46 108 | syl2anc | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 110 | 109 | imp | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 111 | lesubadd | ⊢ ( ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ↔ ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) ) | |
| 112 | 110 111 | syl | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ↔ ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) ) |
| 113 | 105 112 | mpbird | ⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ) |
| 114 | 113 | adantr | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ) |
| 115 | 114 4 | breqtrdi | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 116 | 82 83 115 | 3jca | ⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 117 | 5 116 | sylanl1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 118 | elfz2nn0 | ⊢ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 119 | 117 118 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 120 | 119 | adantll | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 121 | 45 120 | ffvelcdmd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ∈ 𝑉 ) |
| 122 | 44 121 | ifclda | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) |
| 123 | 122 | exp32 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) ) ) |
| 124 | 15 123 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) ) ) |
| 125 | 14 124 | mpcom | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) ) |
| 126 | 125 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) |
| 127 | 126 7 | fmptd | ⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) |
| 128 | 1 2 3 4 5 6 | crctcshlem2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 129 | 128 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... 𝑁 ) ) |
| 130 | 129 | feq2d | ⊢ ( 𝜑 → ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ↔ 𝑄 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) ) |
| 131 | 127 130 | mpbird | ⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ) |
| 132 | 131 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ) |
| 133 | 1 2 | wlkprop | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 134 | 3 8 133 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 135 | 134 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 136 | 4 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 137 | 136 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) |
| 138 | 137 | raleqi | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 139 | fzo1fzo0n0 | ⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ≠ 0 ) ) | |
| 140 | 139 | simplbi2 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑆 ≠ 0 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) ) |
| 141 | 5 140 | syl | ⊢ ( 𝜑 → ( 𝑆 ≠ 0 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) ) |
| 142 | 141 | imp | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
| 143 | 142 | ad2antlr | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
| 144 | simplll | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → 𝐹 ∈ Word dom 𝐼 ) | |
| 145 | wkslem1 | ⊢ ( 𝑖 = 𝑘 → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | |
| 146 | 145 | cbvralvw | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 147 | 146 | biimpi | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 148 | 147 | adantl | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 149 | crctprop | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 150 | 136 | fveq2i | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 𝑁 ) |
| 151 | 150 | eqeq2i | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 152 | 151 | biimpi | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 153 | 152 | eqcomd | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
| 154 | 153 | adantl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
| 155 | 3 149 154 | 3syl | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
| 156 | 155 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
| 157 | 156 | adantr | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
| 158 | 143 7 6 4 144 148 157 | crctcshwlkn0lem7 | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 159 | 128 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
| 160 | 159 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 161 | 160 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 162 | 161 | adantr | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 163 | 158 162 | mpbird | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 164 | 163 | ex | ⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 165 | 138 164 | biimtrid | ⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 166 | 165 | ex | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
| 167 | 166 | com23 | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
| 168 | 167 | 3impia | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 169 | 135 168 | mpcom | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 170 | 13 132 169 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐻 ∈ Word dom 𝐼 ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
| 171 | 1 2 3 4 5 6 7 | crctcshlem3 | ⊢ ( 𝜑 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| 172 | 171 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| 173 | 1 2 | iswlk | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) → ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ↔ ( 𝐻 ∈ Word dom 𝐼 ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
| 174 | 172 173 | syl | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ↔ ( 𝐻 ∈ Word dom 𝐼 ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
| 175 | 170 174 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |