This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo1 | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzossnn | ⊢ ( 1 ..^ 𝑀 ) ⊆ ℕ | |
| 2 | 1 | sseli | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑁 ∈ ℕ ) |
| 3 | elfzouz2 | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 4 | eluznn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 6 | elfzolt2 | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑁 < 𝑀 ) | |
| 7 | 2 5 6 | 3jca | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) ) |
| 8 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 9 | 8 | eqimssi | ⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 10 | 9 | sseli | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 11 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 12 | id | ⊢ ( 𝑁 < 𝑀 → 𝑁 < 𝑀 ) | |
| 13 | 10 11 12 | 3anim123i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀 ) ) |
| 14 | elfzo2 | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) → 𝑁 ∈ ( 1 ..^ 𝑀 ) ) |
| 16 | 7 15 | impbii | ⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) ) |