This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 13-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crctcshwlkn0lem1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) + 1 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 3 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 5 | 1cnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 6 | subsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − ( 𝐵 − 1 ) ) = ( ( 𝐴 − 𝐵 ) + 1 ) ) | |
| 7 | 6 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 1 ) = ( 𝐴 − ( 𝐵 − 1 ) ) ) |
| 8 | 2 4 5 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) + 1 ) = ( 𝐴 − ( 𝐵 − 1 ) ) ) |
| 9 | nnm1ge0 | ⊢ ( 𝐵 ∈ ℕ → 0 ≤ ( 𝐵 − 1 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → 0 ≤ ( 𝐵 − 1 ) ) |
| 11 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 12 | peano2rem | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 − 1 ) ∈ ℝ ) |
| 14 | subge02 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 − 1 ) ∈ ℝ ) → ( 0 ≤ ( 𝐵 − 1 ) ↔ ( 𝐴 − ( 𝐵 − 1 ) ) ≤ 𝐴 ) ) | |
| 15 | 14 | bicomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 − 1 ) ∈ ℝ ) → ( ( 𝐴 − ( 𝐵 − 1 ) ) ≤ 𝐴 ↔ 0 ≤ ( 𝐵 − 1 ) ) ) |
| 16 | 13 15 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − ( 𝐵 − 1 ) ) ≤ 𝐴 ↔ 0 ≤ ( 𝐵 − 1 ) ) ) |
| 17 | 10 16 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 − ( 𝐵 − 1 ) ) ≤ 𝐴 ) |
| 18 | 8 17 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) + 1 ) ≤ 𝐴 ) |