This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
||
| crctcshwlkn0lem.n | |- N = ( # ` F ) |
||
| crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
||
| crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
||
| crctcshwlkn0lem.e | |- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
||
| Assertion | crctcshwlkn0lem7 | |- ( ph -> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| 2 | crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 3 | crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
|
| 4 | crctcshwlkn0lem.n | |- N = ( # ` F ) |
|
| 5 | crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
|
| 6 | crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
|
| 7 | crctcshwlkn0lem.e | |- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
|
| 8 | 1 2 3 4 5 6 | crctcshwlkn0lem4 | |- ( ph -> A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 9 | eqidd | |- ( ph -> ( N - S ) = ( N - S ) ) |
|
| 10 | 1 2 3 4 5 6 7 | crctcshwlkn0lem6 | |- ( ( ph /\ ( N - S ) = ( N - S ) ) -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
| 11 | 9 10 | mpdan | |- ( ph -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
| 12 | ovex | |- ( N - S ) e. _V |
|
| 13 | wkslem1 | |- ( j = ( N - S ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) ) |
|
| 14 | 12 13 | ralsn | |- ( A. j e. { ( N - S ) } if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
| 15 | 11 14 | sylibr | |- ( ph -> A. j e. { ( N - S ) } if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 16 | ralunb | |- ( A. j e. ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> ( A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) /\ A. j e. { ( N - S ) } if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
|
| 17 | 8 15 16 | sylanbrc | |- ( ph -> A. j e. ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 18 | elfzo1 | |- ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) |
|
| 19 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 20 | nnz | |- ( S e. NN -> S e. ZZ ) |
|
| 21 | zsubcl | |- ( ( N e. ZZ /\ S e. ZZ ) -> ( N - S ) e. ZZ ) |
|
| 22 | 19 20 21 | syl2anr | |- ( ( S e. NN /\ N e. NN ) -> ( N - S ) e. ZZ ) |
| 23 | 22 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. ZZ ) |
| 24 | nnre | |- ( S e. NN -> S e. RR ) |
|
| 25 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 26 | posdif | |- ( ( S e. RR /\ N e. RR ) -> ( S < N <-> 0 < ( N - S ) ) ) |
|
| 27 | 0re | |- 0 e. RR |
|
| 28 | resubcl | |- ( ( N e. RR /\ S e. RR ) -> ( N - S ) e. RR ) |
|
| 29 | 28 | ancoms | |- ( ( S e. RR /\ N e. RR ) -> ( N - S ) e. RR ) |
| 30 | ltle | |- ( ( 0 e. RR /\ ( N - S ) e. RR ) -> ( 0 < ( N - S ) -> 0 <_ ( N - S ) ) ) |
|
| 31 | 27 29 30 | sylancr | |- ( ( S e. RR /\ N e. RR ) -> ( 0 < ( N - S ) -> 0 <_ ( N - S ) ) ) |
| 32 | 26 31 | sylbid | |- ( ( S e. RR /\ N e. RR ) -> ( S < N -> 0 <_ ( N - S ) ) ) |
| 33 | 24 25 32 | syl2an | |- ( ( S e. NN /\ N e. NN ) -> ( S < N -> 0 <_ ( N - S ) ) ) |
| 34 | 33 | 3impia | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> 0 <_ ( N - S ) ) |
| 35 | elnn0z | |- ( ( N - S ) e. NN0 <-> ( ( N - S ) e. ZZ /\ 0 <_ ( N - S ) ) ) |
|
| 36 | 23 34 35 | sylanbrc | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN0 ) |
| 37 | elnn0uz | |- ( ( N - S ) e. NN0 <-> ( N - S ) e. ( ZZ>= ` 0 ) ) |
|
| 38 | 36 37 | sylib | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. ( ZZ>= ` 0 ) ) |
| 39 | fzosplitsn | |- ( ( N - S ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) |
|
| 40 | 38 39 | syl | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) |
| 41 | 18 40 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) |
| 42 | 1 41 | syl | |- ( ph -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) |
| 43 | 17 42 | raleqtrrdv | |- ( ph -> A. j e. ( 0 ..^ ( ( N - S ) + 1 ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 44 | 1 2 3 4 5 6 | crctcshwlkn0lem5 | |- ( ph -> A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 45 | ralunb | |- ( A. j e. ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> ( A. j e. ( 0 ..^ ( ( N - S ) + 1 ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) /\ A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
|
| 46 | 43 44 45 | sylanbrc | |- ( ph -> A. j e. ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 47 | nnsub | |- ( ( S e. NN /\ N e. NN ) -> ( S < N <-> ( N - S ) e. NN ) ) |
|
| 48 | 47 | biimp3a | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN ) |
| 49 | nnnn0 | |- ( ( N - S ) e. NN -> ( N - S ) e. NN0 ) |
|
| 50 | peano2nn0 | |- ( ( N - S ) e. NN0 -> ( ( N - S ) + 1 ) e. NN0 ) |
|
| 51 | 48 49 50 | 3syl | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) e. NN0 ) |
| 52 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 53 | 52 | 3ad2ant2 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. NN0 ) |
| 54 | 25 | anim1i | |- ( ( N e. NN /\ S e. NN ) -> ( N e. RR /\ S e. NN ) ) |
| 55 | 54 | ancoms | |- ( ( S e. NN /\ N e. NN ) -> ( N e. RR /\ S e. NN ) ) |
| 56 | crctcshwlkn0lem1 | |- ( ( N e. RR /\ S e. NN ) -> ( ( N - S ) + 1 ) <_ N ) |
|
| 57 | 55 56 | syl | |- ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) + 1 ) <_ N ) |
| 58 | 57 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) <_ N ) |
| 59 | elfz2nn0 | |- ( ( ( N - S ) + 1 ) e. ( 0 ... N ) <-> ( ( ( N - S ) + 1 ) e. NN0 /\ N e. NN0 /\ ( ( N - S ) + 1 ) <_ N ) ) |
|
| 60 | 51 53 58 59 | syl3anbrc | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) e. ( 0 ... N ) ) |
| 61 | 18 60 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. ( 0 ... N ) ) |
| 62 | fzosplit | |- ( ( ( N - S ) + 1 ) e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) ) |
|
| 63 | 1 61 62 | 3syl | |- ( ph -> ( 0 ..^ N ) = ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) ) |
| 64 | 46 63 | raleqtrrdv | |- ( ph -> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |