This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplit | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐶 ) = ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) | |
| 2 | elfzelz | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → 𝐷 ∈ ℤ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → 𝐷 ∈ ℤ ) |
| 4 | fzospliti | ⊢ ( ( 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝑥 ∈ ( 𝐷 ..^ 𝐶 ) ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → ( 𝑥 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝑥 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |
| 6 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝑥 ∈ ( 𝐷 ..^ 𝐶 ) ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |
| 8 | 7 | ex | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) → 𝑥 ∈ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) ) |
| 9 | 8 | ssrdv | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐶 ) ⊆ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |
| 10 | elfzuz3 | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐷 ) ) | |
| 11 | fzoss2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐷 ) → ( 𝐵 ..^ 𝐷 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐷 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
| 13 | elfzuz | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 14 | fzoss1 | ⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐷 ..^ 𝐶 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐷 ..^ 𝐶 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
| 16 | 12 15 | unssd | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
| 17 | 9 16 | eqssd | ⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐶 ) = ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |