This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | ||
| cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | ||
| cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | ||
| cnfcom2.1 | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) | ||
| Assertion | cnfcom2lem | ⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | |
| 4 | cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | |
| 5 | cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 6 | cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 7 | cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 8 | cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 10 | cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | |
| 11 | cnfcom2.1 | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) | |
| 12 | n0i | ⊢ ( ∅ ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ¬ 𝐵 = ∅ ) |
| 14 | omelon | ⊢ ω ∈ On | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 16 | 1 15 2 | cantnff1o | ⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 17 | f1ocnv | ⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) | |
| 18 | f1of | ⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 20 | 19 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 21 | 4 20 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 22 | 1 15 2 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 23 | 21 22 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
| 24 | 23 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → 𝐹 : 𝐴 ⟶ ω ) |
| 26 | 25 | feqmptd | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | dif0 | ⊢ ( 𝐴 ∖ ∅ ) = 𝐴 | |
| 28 | 27 | eleq2i | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ∅ ) ↔ 𝑥 ∈ 𝐴 ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → dom 𝐺 = ∅ ) | |
| 30 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 31 | 1 15 2 5 21 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 32 | 31 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 33 | 5 | oien | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
| 34 | 30 32 33 | syl2anc | ⊢ ( 𝜑 → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
| 36 | 29 35 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ∅ ≈ ( 𝐹 supp ∅ ) ) |
| 37 | 36 | ensymd | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( 𝐹 supp ∅ ) ≈ ∅ ) |
| 38 | en0 | ⊢ ( ( 𝐹 supp ∅ ) ≈ ∅ ↔ ( 𝐹 supp ∅ ) = ∅ ) | |
| 39 | 37 38 | sylib | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( 𝐹 supp ∅ ) = ∅ ) |
| 40 | ss0b | ⊢ ( ( 𝐹 supp ∅ ) ⊆ ∅ ↔ ( 𝐹 supp ∅ ) = ∅ ) | |
| 41 | 39 40 | sylibr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( 𝐹 supp ∅ ) ⊆ ∅ ) |
| 42 | 2 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → 𝐴 ∈ On ) |
| 43 | 0ex | ⊢ ∅ ∈ V | |
| 44 | 43 | a1i | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ∅ ∈ V ) |
| 45 | 25 41 42 44 | suppssr | ⊢ ( ( ( 𝜑 ∧ dom 𝐺 = ∅ ) ∧ 𝑥 ∈ ( 𝐴 ∖ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 46 | 28 45 | sylan2br | ⊢ ( ( ( 𝜑 ∧ dom 𝐺 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 47 | 46 | mpteq2dva | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ∅ ) ) |
| 48 | 26 47 | eqtrd | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ∅ ) ) |
| 49 | fconstmpt | ⊢ ( 𝐴 × { ∅ } ) = ( 𝑥 ∈ 𝐴 ↦ ∅ ) | |
| 50 | 48 49 | eqtr4di | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → 𝐹 = ( 𝐴 × { ∅ } ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( ( ω CNF 𝐴 ) ‘ ( 𝐴 × { ∅ } ) ) ) |
| 52 | 4 | fveq2i | ⊢ ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) |
| 53 | f1ocnvfv2 | ⊢ ( ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) | |
| 54 | 16 3 53 | syl2anc | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
| 55 | 52 54 | eqtrid | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = 𝐵 ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = 𝐵 ) |
| 57 | peano1 | ⊢ ∅ ∈ ω | |
| 58 | 57 | a1i | ⊢ ( 𝜑 → ∅ ∈ ω ) |
| 59 | 1 15 2 58 | cantnf0 | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ ( 𝐴 × { ∅ } ) ) = ∅ ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ ( 𝐴 × { ∅ } ) ) = ∅ ) |
| 61 | 51 56 60 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ dom 𝐺 = ∅ ) → 𝐵 = ∅ ) |
| 62 | 13 61 | mtand | ⊢ ( 𝜑 → ¬ dom 𝐺 = ∅ ) |
| 63 | nnlim | ⊢ ( dom 𝐺 ∈ ω → ¬ Lim dom 𝐺 ) | |
| 64 | 31 63 | simpl2im | ⊢ ( 𝜑 → ¬ Lim dom 𝐺 ) |
| 65 | ioran | ⊢ ( ¬ ( dom 𝐺 = ∅ ∨ Lim dom 𝐺 ) ↔ ( ¬ dom 𝐺 = ∅ ∧ ¬ Lim dom 𝐺 ) ) | |
| 66 | 62 64 65 | sylanbrc | ⊢ ( 𝜑 → ¬ ( dom 𝐺 = ∅ ∨ Lim dom 𝐺 ) ) |
| 67 | 5 | oicl | ⊢ Ord dom 𝐺 |
| 68 | unizlim | ⊢ ( Ord dom 𝐺 → ( dom 𝐺 = ∪ dom 𝐺 ↔ ( dom 𝐺 = ∅ ∨ Lim dom 𝐺 ) ) ) | |
| 69 | 67 68 | ax-mp | ⊢ ( dom 𝐺 = ∪ dom 𝐺 ↔ ( dom 𝐺 = ∅ ∨ Lim dom 𝐺 ) ) |
| 70 | 66 69 | sylnibr | ⊢ ( 𝜑 → ¬ dom 𝐺 = ∪ dom 𝐺 ) |
| 71 | orduniorsuc | ⊢ ( Ord dom 𝐺 → ( dom 𝐺 = ∪ dom 𝐺 ∨ dom 𝐺 = suc ∪ dom 𝐺 ) ) | |
| 72 | 67 71 | mp1i | ⊢ ( 𝜑 → ( dom 𝐺 = ∪ dom 𝐺 ∨ dom 𝐺 = suc ∪ dom 𝐺 ) ) |
| 73 | 72 | ord | ⊢ ( 𝜑 → ( ¬ dom 𝐺 = ∪ dom 𝐺 → dom 𝐺 = suc ∪ dom 𝐺 ) ) |
| 74 | 70 73 | mpd | ⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |