This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnf0.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| Assertion | cantnf0 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnf0.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 5 | eqid | ⊢ OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) | |
| 6 | fconst6g | ⊢ ( ∅ ∈ 𝐴 → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 8 | 3 4 | fczfsuppd | ⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) finSupp ∅ ) |
| 9 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( ( 𝐵 × { ∅ } ) ∈ 𝑆 ↔ ( ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ∧ ( 𝐵 × { ∅ } ) finSupp ∅ ) ) ) |
| 10 | 7 8 9 | mpbir2and | ⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) ∈ 𝑆 ) |
| 11 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 12 | 1 2 3 5 10 11 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) = ( 𝐵 × { ∅ } ) ) | |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | fnconstg | ⊢ ( ∅ ∈ V → ( 𝐵 × { ∅ } ) Fn 𝐵 ) | |
| 16 | 14 15 | mp1i | ⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) Fn 𝐵 ) |
| 17 | 14 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 18 | fnsuppeq0 | ⊢ ( ( ( 𝐵 × { ∅ } ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ ↔ ( 𝐵 × { ∅ } ) = ( 𝐵 × { ∅ } ) ) ) | |
| 19 | 16 3 17 18 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ ↔ ( 𝐵 × { ∅ } ) = ( 𝐵 × { ∅ } ) ) ) |
| 20 | 13 19 | mpbird | ⊢ ( 𝜑 → ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ ) |
| 21 | oieq2 | ⊢ ( ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ → OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = OrdIso ( E , ∅ ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = OrdIso ( E , ∅ ) ) |
| 23 | 22 | dmeqd | ⊢ ( 𝜑 → dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = dom OrdIso ( E , ∅ ) ) |
| 24 | we0 | ⊢ E We ∅ | |
| 25 | eqid | ⊢ OrdIso ( E , ∅ ) = OrdIso ( E , ∅ ) | |
| 26 | 25 | oien | ⊢ ( ( ∅ ∈ V ∧ E We ∅ ) → dom OrdIso ( E , ∅ ) ≈ ∅ ) |
| 27 | 14 24 26 | mp2an | ⊢ dom OrdIso ( E , ∅ ) ≈ ∅ |
| 28 | en0 | ⊢ ( dom OrdIso ( E , ∅ ) ≈ ∅ ↔ dom OrdIso ( E , ∅ ) = ∅ ) | |
| 29 | 27 28 | mpbi | ⊢ dom OrdIso ( E , ∅ ) = ∅ |
| 30 | 23 29 | eqtrdi | ⊢ ( 𝜑 → dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = ∅ ) |
| 31 | 30 | fveq2d | ⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) ) |
| 32 | 11 | seqom0g | ⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 33 | 14 32 | mp1i | ⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 34 | 12 31 33 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ∅ ) |