This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | |- S = dom ( _om CNF A ) |
|
| cnfcom.a | |- ( ph -> A e. On ) |
||
| cnfcom.b | |- ( ph -> B e. ( _om ^o A ) ) |
||
| cnfcom.f | |- F = ( `' ( _om CNF A ) ` B ) |
||
| cnfcom.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cnfcom.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
||
| cnfcom.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
||
| cnfcom.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
||
| cnfcom.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
||
| cnfcom.w | |- W = ( G ` U. dom G ) |
||
| cnfcom2.1 | |- ( ph -> (/) e. B ) |
||
| Assertion | cnfcom2lem | |- ( ph -> dom G = suc U. dom G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | |- S = dom ( _om CNF A ) |
|
| 2 | cnfcom.a | |- ( ph -> A e. On ) |
|
| 3 | cnfcom.b | |- ( ph -> B e. ( _om ^o A ) ) |
|
| 4 | cnfcom.f | |- F = ( `' ( _om CNF A ) ` B ) |
|
| 5 | cnfcom.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 6 | cnfcom.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
|
| 7 | cnfcom.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
|
| 8 | cnfcom.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
|
| 9 | cnfcom.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
|
| 10 | cnfcom.w | |- W = ( G ` U. dom G ) |
|
| 11 | cnfcom2.1 | |- ( ph -> (/) e. B ) |
|
| 12 | n0i | |- ( (/) e. B -> -. B = (/) ) |
|
| 13 | 11 12 | syl | |- ( ph -> -. B = (/) ) |
| 14 | omelon | |- _om e. On |
|
| 15 | 14 | a1i | |- ( ph -> _om e. On ) |
| 16 | 1 15 2 | cantnff1o | |- ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) |
| 17 | f1ocnv | |- ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) |
|
| 18 | f1of | |- ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
|
| 19 | 16 17 18 | 3syl | |- ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
| 20 | 19 3 | ffvelcdmd | |- ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) |
| 21 | 4 20 | eqeltrid | |- ( ph -> F e. S ) |
| 22 | 1 15 2 | cantnfs | |- ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) |
| 23 | 21 22 | mpbid | |- ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) |
| 24 | 23 | simpld | |- ( ph -> F : A --> _om ) |
| 25 | 24 | adantr | |- ( ( ph /\ dom G = (/) ) -> F : A --> _om ) |
| 26 | 25 | feqmptd | |- ( ( ph /\ dom G = (/) ) -> F = ( x e. A |-> ( F ` x ) ) ) |
| 27 | dif0 | |- ( A \ (/) ) = A |
|
| 28 | 27 | eleq2i | |- ( x e. ( A \ (/) ) <-> x e. A ) |
| 29 | simpr | |- ( ( ph /\ dom G = (/) ) -> dom G = (/) ) |
|
| 30 | ovexd | |- ( ph -> ( F supp (/) ) e. _V ) |
|
| 31 | 1 15 2 5 21 | cantnfcl | |- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) |
| 32 | 31 | simpld | |- ( ph -> _E We ( F supp (/) ) ) |
| 33 | 5 | oien | |- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> dom G ~~ ( F supp (/) ) ) |
| 34 | 30 32 33 | syl2anc | |- ( ph -> dom G ~~ ( F supp (/) ) ) |
| 35 | 34 | adantr | |- ( ( ph /\ dom G = (/) ) -> dom G ~~ ( F supp (/) ) ) |
| 36 | 29 35 | eqbrtrrd | |- ( ( ph /\ dom G = (/) ) -> (/) ~~ ( F supp (/) ) ) |
| 37 | 36 | ensymd | |- ( ( ph /\ dom G = (/) ) -> ( F supp (/) ) ~~ (/) ) |
| 38 | en0 | |- ( ( F supp (/) ) ~~ (/) <-> ( F supp (/) ) = (/) ) |
|
| 39 | 37 38 | sylib | |- ( ( ph /\ dom G = (/) ) -> ( F supp (/) ) = (/) ) |
| 40 | ss0b | |- ( ( F supp (/) ) C_ (/) <-> ( F supp (/) ) = (/) ) |
|
| 41 | 39 40 | sylibr | |- ( ( ph /\ dom G = (/) ) -> ( F supp (/) ) C_ (/) ) |
| 42 | 2 | adantr | |- ( ( ph /\ dom G = (/) ) -> A e. On ) |
| 43 | 0ex | |- (/) e. _V |
|
| 44 | 43 | a1i | |- ( ( ph /\ dom G = (/) ) -> (/) e. _V ) |
| 45 | 25 41 42 44 | suppssr | |- ( ( ( ph /\ dom G = (/) ) /\ x e. ( A \ (/) ) ) -> ( F ` x ) = (/) ) |
| 46 | 28 45 | sylan2br | |- ( ( ( ph /\ dom G = (/) ) /\ x e. A ) -> ( F ` x ) = (/) ) |
| 47 | 46 | mpteq2dva | |- ( ( ph /\ dom G = (/) ) -> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> (/) ) ) |
| 48 | 26 47 | eqtrd | |- ( ( ph /\ dom G = (/) ) -> F = ( x e. A |-> (/) ) ) |
| 49 | fconstmpt | |- ( A X. { (/) } ) = ( x e. A |-> (/) ) |
|
| 50 | 48 49 | eqtr4di | |- ( ( ph /\ dom G = (/) ) -> F = ( A X. { (/) } ) ) |
| 51 | 50 | fveq2d | |- ( ( ph /\ dom G = (/) ) -> ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( A X. { (/) } ) ) ) |
| 52 | 4 | fveq2i | |- ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) |
| 53 | f1ocnvfv2 | |- ( ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) /\ B e. ( _om ^o A ) ) -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) |
|
| 54 | 16 3 53 | syl2anc | |- ( ph -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) |
| 55 | 52 54 | eqtrid | |- ( ph -> ( ( _om CNF A ) ` F ) = B ) |
| 56 | 55 | adantr | |- ( ( ph /\ dom G = (/) ) -> ( ( _om CNF A ) ` F ) = B ) |
| 57 | peano1 | |- (/) e. _om |
|
| 58 | 57 | a1i | |- ( ph -> (/) e. _om ) |
| 59 | 1 15 2 58 | cantnf0 | |- ( ph -> ( ( _om CNF A ) ` ( A X. { (/) } ) ) = (/) ) |
| 60 | 59 | adantr | |- ( ( ph /\ dom G = (/) ) -> ( ( _om CNF A ) ` ( A X. { (/) } ) ) = (/) ) |
| 61 | 51 56 60 | 3eqtr3d | |- ( ( ph /\ dom G = (/) ) -> B = (/) ) |
| 62 | 13 61 | mtand | |- ( ph -> -. dom G = (/) ) |
| 63 | nnlim | |- ( dom G e. _om -> -. Lim dom G ) |
|
| 64 | 31 63 | simpl2im | |- ( ph -> -. Lim dom G ) |
| 65 | ioran | |- ( -. ( dom G = (/) \/ Lim dom G ) <-> ( -. dom G = (/) /\ -. Lim dom G ) ) |
|
| 66 | 62 64 65 | sylanbrc | |- ( ph -> -. ( dom G = (/) \/ Lim dom G ) ) |
| 67 | 5 | oicl | |- Ord dom G |
| 68 | unizlim | |- ( Ord dom G -> ( dom G = U. dom G <-> ( dom G = (/) \/ Lim dom G ) ) ) |
|
| 69 | 67 68 | ax-mp | |- ( dom G = U. dom G <-> ( dom G = (/) \/ Lim dom G ) ) |
| 70 | 66 69 | sylnibr | |- ( ph -> -. dom G = U. dom G ) |
| 71 | orduniorsuc | |- ( Ord dom G -> ( dom G = U. dom G \/ dom G = suc U. dom G ) ) |
|
| 72 | 67 71 | mp1i | |- ( ph -> ( dom G = U. dom G \/ dom G = suc U. dom G ) ) |
| 73 | 72 | ord | |- ( ph -> ( -. dom G = U. dom G -> dom G = suc U. dom G ) ) |
| 74 | 70 73 | mpd | |- ( ph -> dom G = suc U. dom G ) |