This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any nonzero ordinal B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | ||
| cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | ||
| cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | ||
| cnfcom2.1 | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) | ||
| Assertion | cnfcom2 | ⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | |
| 4 | cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | |
| 5 | cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 6 | cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 7 | cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 8 | cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 10 | cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | |
| 11 | cnfcom2.1 | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) | |
| 12 | ovex | ⊢ ( 𝐹 supp ∅ ) ∈ V | |
| 13 | 5 | oion | ⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
| 14 | 12 13 | ax-mp | ⊢ dom 𝐺 ∈ On |
| 15 | 14 | elexi | ⊢ dom 𝐺 ∈ V |
| 16 | 15 | uniex | ⊢ ∪ dom 𝐺 ∈ V |
| 17 | 16 | sucid | ⊢ ∪ dom 𝐺 ∈ suc ∪ dom 𝐺 |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom2lem | ⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
| 19 | 17 18 | eleqtrrid | ⊢ ( 𝜑 → ∪ dom 𝐺 ∈ dom 𝐺 ) |
| 20 | 1 2 3 4 5 6 7 8 9 19 | cnfcom | ⊢ ( 𝜑 → ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) ) |
| 21 | 10 | oveq2i | ⊢ ( ω ↑o 𝑊 ) = ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) |
| 22 | 10 | fveq2i | ⊢ ( 𝐹 ‘ 𝑊 ) = ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) |
| 23 | 21 22 | oveq12i | ⊢ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) = ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) |
| 24 | f1oeq3 | ⊢ ( ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) = ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) → ( ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) ) ) | |
| 25 | 23 24 | ax-mp | ⊢ ( ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) ) |
| 26 | 20 25 | sylibr | ⊢ ( 𝜑 → ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
| 27 | 18 | fveq2d | ⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) = ( 𝑇 ‘ suc ∪ dom 𝐺 ) ) |
| 28 | 27 | f1oeq1d | ⊢ ( 𝜑 → ( ( 𝑇 ‘ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) ) |
| 29 | 26 28 | mpbird | ⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
| 30 | omelon | ⊢ ω ∈ On | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 32 | 1 31 2 | cantnff1o | ⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 33 | f1ocnv | ⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) | |
| 34 | f1of | ⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) | |
| 35 | 32 33 34 | 3syl | ⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 36 | 35 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 37 | 4 36 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 38 | 8 | oveq1i | ⊢ ( 𝑀 +o 𝑧 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) |
| 39 | 38 | a1i | ⊢ ( ( 𝑘 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑀 +o 𝑧 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 40 | 39 | mpoeq3ia | ⊢ ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 41 | eqid | ⊢ ∅ = ∅ | |
| 42 | seqomeq12 | ⊢ ( ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) | |
| 43 | 40 41 42 | mp2an | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 44 | 6 43 | eqtri | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 45 | 1 31 2 5 37 44 | cantnfval | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 46 | 4 | fveq2i | ⊢ ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) |
| 47 | 45 46 | eqtr3di | ⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝐺 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) ) |
| 48 | 18 | fveq2d | ⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝐺 ) = ( 𝐻 ‘ suc ∪ dom 𝐺 ) ) |
| 49 | f1ocnvfv2 | ⊢ ( ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) | |
| 50 | 32 3 49 | syl2anc | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
| 51 | 47 48 50 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐻 ‘ suc ∪ dom 𝐺 ) = 𝐵 ) |
| 52 | 51 | f1oeq2d | ⊢ ( 𝜑 → ( ( 𝑇 ‘ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) ) |
| 53 | 29 52 | mpbid | ⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |