This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| invfval.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | invfval.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 7 | 1 2 3 4 5 6 | invfval | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |
| 8 | 7 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) 𝐺 ) ) |
| 9 | brin | ⊢ ( 𝐹 ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ) ) ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 13 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 14 | 1 11 12 13 6 3 5 4 | sectss | ⊢ ( 𝜑 → ( 𝑌 𝑆 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 15 | relxp | ⊢ Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) | |
| 16 | relss | ⊢ ( ( 𝑌 𝑆 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 𝑆 𝑋 ) ) ) | |
| 17 | 14 15 16 | mpisyl | ⊢ ( 𝜑 → Rel ( 𝑌 𝑆 𝑋 ) ) |
| 18 | relbrcnvg | ⊢ ( Rel ( 𝑌 𝑆 𝑋 ) → ( 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ( 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ) ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
| 21 | 10 20 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |