This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catccatid.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catccatid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| catcid.i | ⊢ 𝐼 = ( idfunc ‘ 𝑋 ) | ||
| catcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| catcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | catcid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catccatid.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catccatid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 4 | catcid.i | ⊢ 𝐼 = ( idfunc ‘ 𝑋 ) | |
| 5 | catcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | catcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 | catccatid | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) |
| 10 | 3 9 | eqtrid | ⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( idfunc ‘ 𝑥 ) = ( idfunc ‘ 𝑋 ) ) |
| 13 | fvexd | ⊢ ( 𝜑 → ( idfunc ‘ 𝑋 ) ∈ V ) | |
| 14 | 10 12 6 13 | fvmptd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) ) |
| 15 | 14 4 | eqtr4di | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = 𝐼 ) |