This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbas.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| catcco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| catcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| catcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| catcco.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 Func 𝑌 ) ) | ||
| catcco.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 Func 𝑍 ) ) | ||
| Assertion | catcco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | catcco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 5 | catcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | catcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | catcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | catcco.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 Func 𝑌 ) ) | |
| 9 | catcco.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 Func 𝑍 ) ) | |
| 10 | 1 2 3 4 | catccofval | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑣 = 〈 𝑋 , 𝑌 〉 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑣 ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 13 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) | |
| 14 | 5 6 13 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 16 | 12 15 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑣 ) = 𝑌 ) |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑧 = 𝑍 ) | |
| 18 | 16 17 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) = ( 𝑌 Func 𝑍 ) ) |
| 19 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Func ‘ 𝑣 ) = ( Func ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 20 | df-ov | ⊢ ( 𝑋 Func 𝑌 ) = ( Func ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 21 | 19 20 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Func ‘ 𝑣 ) = ( 𝑋 Func 𝑌 ) ) |
| 22 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∘func 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) | |
| 23 | 18 21 22 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 Func 𝑍 ) , 𝑓 ∈ ( 𝑋 Func 𝑌 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) |
| 24 | 5 6 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 25 | ovex | ⊢ ( 𝑌 Func 𝑍 ) ∈ V | |
| 26 | ovex | ⊢ ( 𝑋 Func 𝑌 ) ∈ V | |
| 27 | 25 26 | mpoex | ⊢ ( 𝑔 ∈ ( 𝑌 Func 𝑍 ) , 𝑓 ∈ ( 𝑋 Func 𝑌 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ∈ V |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 Func 𝑍 ) , 𝑓 ∈ ( 𝑋 Func 𝑌 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ∈ V ) |
| 29 | 10 23 24 7 28 | ovmpod | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) = ( 𝑔 ∈ ( 𝑌 Func 𝑍 ) , 𝑓 ∈ ( 𝑋 Func 𝑌 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) |
| 30 | oveq12 | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → ( 𝑔 ∘func 𝑓 ) = ( 𝐺 ∘func 𝐹 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝑔 ∘func 𝑓 ) = ( 𝐺 ∘func 𝐹 ) ) |
| 32 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ V ) | |
| 33 | 29 31 9 8 32 | ovmpod | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |