This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| idfuval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | idfuval | ⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | idfuval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | fvexd | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) ∈ V ) | |
| 6 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 8 | simpr | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) | |
| 9 | 8 | reseq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( I ↾ 𝑏 ) = ( I ↾ 𝐵 ) ) |
| 10 | 8 | sqxpeqd | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
| 11 | simpl | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → 𝑐 = 𝐶 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 13 | 12 4 | eqtr4di | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 14 | 13 | fveq1d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( ( Hom ‘ 𝑐 ) ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) |
| 15 | 14 | reseq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( I ↾ ( ( Hom ‘ 𝑐 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) |
| 16 | 10 15 | mpteq12dv | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑐 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 17 | 9 16 | opeq12d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑐 ) ‘ 𝑧 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 18 | 5 7 17 | csbied2 | ⊢ ( 𝑐 = 𝐶 → ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑐 ) ‘ 𝑧 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 19 | df-idfu | ⊢ idfunc = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑐 ) ‘ 𝑧 ) ) ) 〉 ) | |
| 20 | opex | ⊢ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ∈ V | |
| 21 | 18 19 20 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( idfunc ‘ 𝐶 ) = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 22 | 3 21 | syl | ⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 23 | 1 22 | eqtrid | ⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |