This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofuval2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| cofuval2.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| cofuval2.x | ⊢ ( 𝜑 → 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ) | ||
| Assertion | cofuval2 | ⊢ ( 𝜑 → ( 〈 𝐻 , 𝐾 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐻 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | cofuval2.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 3 | cofuval2.x | ⊢ ( 𝜑 → 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ) | |
| 4 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 5 | 2 4 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 | df-br | ⊢ ( 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ↔ 〈 𝐻 , 𝐾 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 7 | 3 6 | sylib | ⊢ ( 𝜑 → 〈 𝐻 , 𝐾 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 8 | 1 5 7 | cofuval | ⊢ ( 𝜑 → ( 〈 𝐻 , 𝐾 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) ) 〉 ) |
| 9 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 10 | brrelex12 | ⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ) → ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) ) | |
| 11 | 9 3 10 | sylancr | ⊢ ( 𝜑 → ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) ) |
| 12 | op1stg | ⊢ ( ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) → ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐻 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐻 ) |
| 14 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 15 | brrelex12 | ⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 16 | 14 2 15 | sylancr | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 17 | op1stg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 19 | 13 18 | coeq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) = ( 𝐻 ∘ 𝐹 ) ) |
| 20 | op2ndg | ⊢ ( ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) → ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐾 ) | |
| 21 | 11 20 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐾 ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐾 ) |
| 23 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 24 | 23 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 25 | 23 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 26 | 22 24 25 | oveq123d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | op2ndg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) | |
| 28 | 16 27 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 30 | 29 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 31 | 26 30 | coeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) |
| 32 | 31 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 33 | 19 32 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) ) 〉 = 〈 ( 𝐻 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |
| 34 | 8 33 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝐻 , 𝐾 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐻 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |