This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbas.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| catchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | catchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 Func 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | catchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | catchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | catchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 | catchomfval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) ) |
| 8 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 Func 𝑦 ) = ( 𝑋 Func 𝑌 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 Func 𝑦 ) = ( 𝑋 Func 𝑌 ) ) |
| 10 | ovexd | ⊢ ( 𝜑 → ( 𝑋 Func 𝑌 ) ∈ V ) | |
| 11 | 7 9 5 6 10 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 Func 𝑌 ) ) |