This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfth.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isfth.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isfth.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| ffthf1o.f | ⊢ ( 𝜑 → 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ) | ||
| ffthf1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ffthf1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ffthf1o | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isfth.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isfth.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 4 | ffthf1o.f | ⊢ ( 𝜑 → 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ) | |
| 5 | ffthf1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ffthf1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | brin | ⊢ ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) | |
| 8 | 4 7 | sylib | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 10 | 1 2 3 9 5 6 | fthf1 | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 11 | 8 | simpld | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 12 | 1 3 2 11 5 6 | fullfo | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 13 | df-f1o | ⊢ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) | |
| 14 | 10 12 13 | sylanbrc | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |