This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbas.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| Assertion | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( 𝑈 ∩ Cat ) = ( 𝑈 ∩ Cat ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) = ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) = ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) ) | |
| 7 | 1 3 4 5 6 | catcval | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |
| 8 | catstr | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 | |
| 9 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 10 | snsstp1 | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } | |
| 11 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Cat ) ∈ V ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → ( 𝑈 ∩ Cat ) ∈ V ) |
| 13 | 7 8 9 10 12 2 | strfv3 | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |