This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| issect.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| issect.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| issect.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) | ||
| Assertion | issect2 | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | issect.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | issect.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | issect.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 11 | 9 10 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
| 12 | 1 2 3 4 5 6 7 8 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |
| 13 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |
| 15 | 11 14 | mpbirand | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |