This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound on the CNF function. Since ( ( A CNF B )F ) is defined as the sum of ( A ^o x ) .o ( Fx ) over all x in the support of F , it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all C e. B instead of just those C in the support). (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| cantnfle.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| Assertion | cantnfle | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 5 | cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 7 | cantnfle.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 8 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝐶 ) = ∅ → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ) | |
| 9 | 8 | sseq1d | ⊢ ( ( 𝐹 ‘ 𝐶 ) = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) ) |
| 10 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 11 | 1 2 3 4 5 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 12 | 11 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 13 | 4 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 14 | 10 12 13 | syl2anc | ⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 15 | isof1o | ⊢ ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
| 18 | f1ocnv | ⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 ) | |
| 19 | f1of | ⊢ ( ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) |
| 21 | 7 | anim1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( 𝐶 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ) |
| 22 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 23 | 5 22 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 24 | 23 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 26 | 25 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐹 Fn 𝐵 ) |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐵 ∈ On ) |
| 28 | 0ex | ⊢ ∅ ∈ V | |
| 29 | 28 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ∅ ∈ V ) |
| 30 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝐶 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝐶 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ) ) | |
| 31 | 26 27 29 30 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( 𝐶 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝐶 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ) ) |
| 32 | 21 31 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐶 ∈ ( 𝐹 supp ∅ ) ) |
| 33 | 20 32 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 ) |
| 34 | 11 | simprd | ⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → dom 𝐺 ∈ ω ) |
| 36 | eqimss | ⊢ ( 𝑥 = dom 𝐺 → 𝑥 ⊆ dom 𝐺 ) | |
| 37 | 36 | biantrurd | ⊢ ( 𝑥 = dom 𝐺 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ) ) |
| 38 | eleq2 | ⊢ ( 𝑥 = dom 𝐺 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 ) ) | |
| 39 | 37 38 | bitr3d | ⊢ ( 𝑥 = dom 𝐺 → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 ) ) |
| 40 | fveq2 | ⊢ ( 𝑥 = dom 𝐺 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ dom 𝐺 ) ) | |
| 41 | 40 | sseq2d | ⊢ ( 𝑥 = dom 𝐺 → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) |
| 42 | 39 41 | imbi12d | ⊢ ( 𝑥 = dom 𝐺 → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) ) |
| 43 | 42 | imbi2d | ⊢ ( 𝑥 = dom 𝐺 → ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) ) ) |
| 44 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺 ) ) | |
| 45 | eleq2 | ⊢ ( 𝑥 = ∅ → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) ) | |
| 46 | 44 45 | anbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ∅ ) ) | |
| 48 | 47 | sseq2d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) ) |
| 49 | 46 48 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) ) ) |
| 50 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ dom 𝐺 ↔ 𝑦 ⊆ dom 𝐺 ) ) | |
| 51 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) | |
| 52 | 50 51 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) ) |
| 53 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 54 | 53 | sseq2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) |
| 55 | 52 54 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 56 | sseq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺 ) ) | |
| 57 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) ) | |
| 58 | 56 57 | anbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) ) ) |
| 59 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) | |
| 60 | 59 | sseq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 61 | 58 60 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 62 | noel | ⊢ ¬ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ | |
| 63 | 62 | pm2.21i | ⊢ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) |
| 64 | 63 | adantl | ⊢ ( ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) |
| 65 | 64 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) ) |
| 66 | fvex | ⊢ ( ◡ 𝐺 ‘ 𝐶 ) ∈ V | |
| 67 | 66 | elsuc | ⊢ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ↔ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ∨ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) |
| 68 | sssucid | ⊢ 𝑦 ⊆ suc 𝑦 | |
| 69 | sstr | ⊢ ( ( 𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝑦 ⊆ dom 𝐺 ) | |
| 70 | 68 69 | mpan | ⊢ ( suc 𝑦 ⊆ dom 𝐺 → 𝑦 ⊆ dom 𝐺 ) |
| 71 | 70 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → 𝑦 ⊆ dom 𝐺 ) |
| 72 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) | |
| 73 | pm2.27 | ⊢ ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) | |
| 74 | 71 72 73 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) |
| 75 | 6 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On |
| 76 | 75 | ffvelcdmi | ⊢ ( 𝑦 ∈ ω → ( 𝐻 ‘ 𝑦 ) ∈ On ) |
| 77 | 76 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ∈ On ) |
| 78 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝐴 ∈ On ) |
| 79 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝐵 ∈ On ) |
| 80 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 81 | 80 24 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 82 | 81 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 83 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → suc 𝑦 ⊆ dom 𝐺 ) | |
| 84 | sucidg | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ suc 𝑦 ) | |
| 85 | 84 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝑦 ∈ suc 𝑦 ) |
| 86 | 83 85 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) |
| 87 | 4 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 88 | 87 | ffvelcdmi | ⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 89 | 86 88 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 90 | 82 89 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 91 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) | |
| 92 | 79 90 91 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 93 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) | |
| 94 | 78 92 93 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 95 | 24 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 96 | 95 90 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐴 ) |
| 97 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) | |
| 98 | 78 96 97 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 99 | omcl | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ) | |
| 100 | 94 98 99 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ) |
| 101 | oaword2 | ⊢ ( ( ( 𝐻 ‘ 𝑦 ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ) → ( 𝐻 ‘ 𝑦 ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) | |
| 102 | 77 100 101 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 103 | 1 2 3 4 5 6 | cantnfsuc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 104 | 103 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 105 | 102 104 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) |
| 106 | sstr | ⊢ ( ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ∧ ( 𝐻 ‘ 𝑦 ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) | |
| 107 | 106 | expcom | ⊢ ( ( 𝐻 ‘ 𝑦 ) ⊆ ( 𝐻 ‘ suc 𝑦 ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 108 | 105 107 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 109 | 108 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 110 | 74 109 | syld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 111 | 110 | expr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 112 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) | |
| 113 | 112 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 114 | f1ocnvfv2 | ⊢ ( ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ∧ 𝐶 ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = 𝐶 ) | |
| 115 | 17 32 114 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = 𝐶 ) |
| 116 | 115 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = 𝐶 ) |
| 117 | 113 116 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐺 ‘ 𝑦 ) = 𝐶 ) |
| 118 | 117 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ↑o 𝐶 ) ) |
| 119 | 117 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝐶 ) ) |
| 120 | 118 119 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ) |
| 121 | oaword1 | ⊢ ( ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ∧ ( 𝐻 ‘ 𝑦 ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) | |
| 122 | 100 77 121 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 123 | 122 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 124 | 120 123 | eqsstrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 125 | 103 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 126 | 124 125 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) |
| 127 | 126 | expr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 128 | 127 | a1dd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 129 | 111 128 | jaod | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ∨ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 130 | 67 129 | biimtrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 131 | 130 | expimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 132 | 131 | com23 | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 133 | 132 | expcom | ⊢ ( 𝑦 ∈ ω → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) ) |
| 134 | 49 55 61 65 133 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 135 | 43 134 | vtoclga | ⊢ ( dom 𝐺 ∈ ω → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) ) |
| 136 | 35 135 | mpcom | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) |
| 137 | 33 136 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) |
| 138 | 1 2 3 4 5 6 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 139 | 138 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 140 | 137 139 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |
| 141 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ On ) | |
| 142 | 3 7 141 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 143 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) | |
| 144 | 2 142 143 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 145 | om0 | ⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) | |
| 146 | 144 145 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) |
| 147 | 0ss | ⊢ ∅ ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) | |
| 148 | 146 147 | eqsstrdi | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |
| 149 | 9 140 148 | pm2.61ne | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |