This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound on the CNF function. Since ( ( A CNF B )F ) is defined as the sum of ( A ^o x ) .o ( Fx ) over all x in the support of F , it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all C e. B instead of just those C in the support). (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cantnfcl.f | |- ( ph -> F e. S ) |
||
| cantnfval.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
||
| cantnfle.c | |- ( ph -> C e. B ) |
||
| Assertion | cantnfle | |- ( ph -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( ( A CNF B ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 5 | cantnfcl.f | |- ( ph -> F e. S ) |
|
| 6 | cantnfval.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
|
| 7 | cantnfle.c | |- ( ph -> C e. B ) |
|
| 8 | oveq2 | |- ( ( F ` C ) = (/) -> ( ( A ^o C ) .o ( F ` C ) ) = ( ( A ^o C ) .o (/) ) ) |
|
| 9 | 8 | sseq1d | |- ( ( F ` C ) = (/) -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( ( A CNF B ) ` F ) <-> ( ( A ^o C ) .o (/) ) C_ ( ( A CNF B ) ` F ) ) ) |
| 10 | ovexd | |- ( ph -> ( F supp (/) ) e. _V ) |
|
| 11 | 1 2 3 4 5 | cantnfcl | |- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) |
| 12 | 11 | simpld | |- ( ph -> _E We ( F supp (/) ) ) |
| 13 | 4 | oiiso | |- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
| 14 | 10 12 13 | syl2anc | |- ( ph -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
| 15 | isof1o | |- ( G Isom _E , _E ( dom G , ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
| 18 | f1ocnv | |- ( G : dom G -1-1-onto-> ( F supp (/) ) -> `' G : ( F supp (/) ) -1-1-onto-> dom G ) |
|
| 19 | f1of | |- ( `' G : ( F supp (/) ) -1-1-onto-> dom G -> `' G : ( F supp (/) ) --> dom G ) |
|
| 20 | 17 18 19 | 3syl | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> `' G : ( F supp (/) ) --> dom G ) |
| 21 | 7 | anim1i | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( C e. B /\ ( F ` C ) =/= (/) ) ) |
| 22 | 1 2 3 | cantnfs | |- ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) ) |
| 23 | 5 22 | mpbid | |- ( ph -> ( F : B --> A /\ F finSupp (/) ) ) |
| 24 | 23 | simpld | |- ( ph -> F : B --> A ) |
| 25 | 24 | adantr | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> F : B --> A ) |
| 26 | 25 | ffnd | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> F Fn B ) |
| 27 | 3 | adantr | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> B e. On ) |
| 28 | 0ex | |- (/) e. _V |
|
| 29 | 28 | a1i | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> (/) e. _V ) |
| 30 | elsuppfn | |- ( ( F Fn B /\ B e. On /\ (/) e. _V ) -> ( C e. ( F supp (/) ) <-> ( C e. B /\ ( F ` C ) =/= (/) ) ) ) |
|
| 31 | 26 27 29 30 | syl3anc | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( C e. ( F supp (/) ) <-> ( C e. B /\ ( F ` C ) =/= (/) ) ) ) |
| 32 | 21 31 | mpbird | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> C e. ( F supp (/) ) ) |
| 33 | 20 32 | ffvelcdmd | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( `' G ` C ) e. dom G ) |
| 34 | 11 | simprd | |- ( ph -> dom G e. _om ) |
| 35 | 34 | adantr | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> dom G e. _om ) |
| 36 | eqimss | |- ( x = dom G -> x C_ dom G ) |
|
| 37 | 36 | biantrurd | |- ( x = dom G -> ( ( `' G ` C ) e. x <-> ( x C_ dom G /\ ( `' G ` C ) e. x ) ) ) |
| 38 | eleq2 | |- ( x = dom G -> ( ( `' G ` C ) e. x <-> ( `' G ` C ) e. dom G ) ) |
|
| 39 | 37 38 | bitr3d | |- ( x = dom G -> ( ( x C_ dom G /\ ( `' G ` C ) e. x ) <-> ( `' G ` C ) e. dom G ) ) |
| 40 | fveq2 | |- ( x = dom G -> ( H ` x ) = ( H ` dom G ) ) |
|
| 41 | 40 | sseq2d | |- ( x = dom G -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) <-> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` dom G ) ) ) |
| 42 | 39 41 | imbi12d | |- ( x = dom G -> ( ( ( x C_ dom G /\ ( `' G ` C ) e. x ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) ) <-> ( ( `' G ` C ) e. dom G -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` dom G ) ) ) ) |
| 43 | 42 | imbi2d | |- ( x = dom G -> ( ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( x C_ dom G /\ ( `' G ` C ) e. x ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) ) ) <-> ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( `' G ` C ) e. dom G -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` dom G ) ) ) ) ) |
| 44 | sseq1 | |- ( x = (/) -> ( x C_ dom G <-> (/) C_ dom G ) ) |
|
| 45 | eleq2 | |- ( x = (/) -> ( ( `' G ` C ) e. x <-> ( `' G ` C ) e. (/) ) ) |
|
| 46 | 44 45 | anbi12d | |- ( x = (/) -> ( ( x C_ dom G /\ ( `' G ` C ) e. x ) <-> ( (/) C_ dom G /\ ( `' G ` C ) e. (/) ) ) ) |
| 47 | fveq2 | |- ( x = (/) -> ( H ` x ) = ( H ` (/) ) ) |
|
| 48 | 47 | sseq2d | |- ( x = (/) -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) <-> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` (/) ) ) ) |
| 49 | 46 48 | imbi12d | |- ( x = (/) -> ( ( ( x C_ dom G /\ ( `' G ` C ) e. x ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) ) <-> ( ( (/) C_ dom G /\ ( `' G ` C ) e. (/) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` (/) ) ) ) ) |
| 50 | sseq1 | |- ( x = y -> ( x C_ dom G <-> y C_ dom G ) ) |
|
| 51 | eleq2 | |- ( x = y -> ( ( `' G ` C ) e. x <-> ( `' G ` C ) e. y ) ) |
|
| 52 | 50 51 | anbi12d | |- ( x = y -> ( ( x C_ dom G /\ ( `' G ` C ) e. x ) <-> ( y C_ dom G /\ ( `' G ` C ) e. y ) ) ) |
| 53 | fveq2 | |- ( x = y -> ( H ` x ) = ( H ` y ) ) |
|
| 54 | 53 | sseq2d | |- ( x = y -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) <-> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) ) |
| 55 | 52 54 | imbi12d | |- ( x = y -> ( ( ( x C_ dom G /\ ( `' G ` C ) e. x ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) ) <-> ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) ) ) |
| 56 | sseq1 | |- ( x = suc y -> ( x C_ dom G <-> suc y C_ dom G ) ) |
|
| 57 | eleq2 | |- ( x = suc y -> ( ( `' G ` C ) e. x <-> ( `' G ` C ) e. suc y ) ) |
|
| 58 | 56 57 | anbi12d | |- ( x = suc y -> ( ( x C_ dom G /\ ( `' G ` C ) e. x ) <-> ( suc y C_ dom G /\ ( `' G ` C ) e. suc y ) ) ) |
| 59 | fveq2 | |- ( x = suc y -> ( H ` x ) = ( H ` suc y ) ) |
|
| 60 | 59 | sseq2d | |- ( x = suc y -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) <-> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) |
| 61 | 58 60 | imbi12d | |- ( x = suc y -> ( ( ( x C_ dom G /\ ( `' G ` C ) e. x ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) ) <-> ( ( suc y C_ dom G /\ ( `' G ` C ) e. suc y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 62 | noel | |- -. ( `' G ` C ) e. (/) |
|
| 63 | 62 | pm2.21i | |- ( ( `' G ` C ) e. (/) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` (/) ) ) |
| 64 | 63 | adantl | |- ( ( (/) C_ dom G /\ ( `' G ` C ) e. (/) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` (/) ) ) |
| 65 | 64 | a1i | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( (/) C_ dom G /\ ( `' G ` C ) e. (/) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` (/) ) ) ) |
| 66 | fvex | |- ( `' G ` C ) e. _V |
|
| 67 | 66 | elsuc | |- ( ( `' G ` C ) e. suc y <-> ( ( `' G ` C ) e. y \/ ( `' G ` C ) = y ) ) |
| 68 | sssucid | |- y C_ suc y |
|
| 69 | sstr | |- ( ( y C_ suc y /\ suc y C_ dom G ) -> y C_ dom G ) |
|
| 70 | 68 69 | mpan | |- ( suc y C_ dom G -> y C_ dom G ) |
| 71 | 70 | ad2antrl | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) e. y ) ) -> y C_ dom G ) |
| 72 | simprr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) e. y ) ) -> ( `' G ` C ) e. y ) |
|
| 73 | pm2.27 | |- ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) ) |
|
| 74 | 71 72 73 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) e. y ) ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) ) |
| 75 | 6 | cantnfvalf | |- H : _om --> On |
| 76 | 75 | ffvelcdmi | |- ( y e. _om -> ( H ` y ) e. On ) |
| 77 | 76 | ad2antlr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( H ` y ) e. On ) |
| 78 | 2 | ad3antrrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> A e. On ) |
| 79 | 3 | ad3antrrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> B e. On ) |
| 80 | suppssdm | |- ( F supp (/) ) C_ dom F |
|
| 81 | 80 24 | fssdm | |- ( ph -> ( F supp (/) ) C_ B ) |
| 82 | 81 | ad3antrrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( F supp (/) ) C_ B ) |
| 83 | simpr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> suc y C_ dom G ) |
|
| 84 | sucidg | |- ( y e. _om -> y e. suc y ) |
|
| 85 | 84 | ad2antlr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> y e. suc y ) |
| 86 | 83 85 | sseldd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> y e. dom G ) |
| 87 | 4 | oif | |- G : dom G --> ( F supp (/) ) |
| 88 | 87 | ffvelcdmi | |- ( y e. dom G -> ( G ` y ) e. ( F supp (/) ) ) |
| 89 | 86 88 | syl | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( G ` y ) e. ( F supp (/) ) ) |
| 90 | 82 89 | sseldd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( G ` y ) e. B ) |
| 91 | onelon | |- ( ( B e. On /\ ( G ` y ) e. B ) -> ( G ` y ) e. On ) |
|
| 92 | 79 90 91 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( G ` y ) e. On ) |
| 93 | oecl | |- ( ( A e. On /\ ( G ` y ) e. On ) -> ( A ^o ( G ` y ) ) e. On ) |
|
| 94 | 78 92 93 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( A ^o ( G ` y ) ) e. On ) |
| 95 | 24 | ad3antrrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> F : B --> A ) |
| 96 | 95 90 | ffvelcdmd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( F ` ( G ` y ) ) e. A ) |
| 97 | onelon | |- ( ( A e. On /\ ( F ` ( G ` y ) ) e. A ) -> ( F ` ( G ` y ) ) e. On ) |
|
| 98 | 78 96 97 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( F ` ( G ` y ) ) e. On ) |
| 99 | omcl | |- ( ( ( A ^o ( G ` y ) ) e. On /\ ( F ` ( G ` y ) ) e. On ) -> ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) e. On ) |
|
| 100 | 94 98 99 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) e. On ) |
| 101 | oaword2 | |- ( ( ( H ` y ) e. On /\ ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) e. On ) -> ( H ` y ) C_ ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
|
| 102 | 77 100 101 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( H ` y ) C_ ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 103 | 1 2 3 4 5 6 | cantnfsuc | |- ( ( ph /\ y e. _om ) -> ( H ` suc y ) = ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 104 | 103 | ad4ant13 | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( H ` suc y ) = ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 105 | 102 104 | sseqtrrd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( H ` y ) C_ ( H ` suc y ) ) |
| 106 | sstr | |- ( ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) /\ ( H ` y ) C_ ( H ` suc y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) |
|
| 107 | 106 | expcom | |- ( ( H ` y ) C_ ( H ` suc y ) -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) |
| 108 | 105 107 | syl | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) |
| 109 | 108 | adantrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) e. y ) ) -> ( ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) |
| 110 | 74 109 | syld | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) e. y ) ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) |
| 111 | 110 | expr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( `' G ` C ) e. y -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 112 | simprr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( `' G ` C ) = y ) |
|
| 113 | 112 | fveq2d | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( G ` ( `' G ` C ) ) = ( G ` y ) ) |
| 114 | f1ocnvfv2 | |- ( ( G : dom G -1-1-onto-> ( F supp (/) ) /\ C e. ( F supp (/) ) ) -> ( G ` ( `' G ` C ) ) = C ) |
|
| 115 | 17 32 114 | syl2anc | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( G ` ( `' G ` C ) ) = C ) |
| 116 | 115 | ad2antrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( G ` ( `' G ` C ) ) = C ) |
| 117 | 113 116 | eqtr3d | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( G ` y ) = C ) |
| 118 | 117 | oveq2d | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( A ^o ( G ` y ) ) = ( A ^o C ) ) |
| 119 | 117 | fveq2d | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( F ` ( G ` y ) ) = ( F ` C ) ) |
| 120 | 118 119 | oveq12d | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) = ( ( A ^o C ) .o ( F ` C ) ) ) |
| 121 | oaword1 | |- ( ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) e. On /\ ( H ` y ) e. On ) -> ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) C_ ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
|
| 122 | 100 77 121 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) C_ ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 123 | 122 | adantrr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) C_ ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 124 | 120 123 | eqsstrrd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 125 | 103 | ad4ant13 | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( H ` suc y ) = ( ( ( A ^o ( G ` y ) ) .o ( F ` ( G ` y ) ) ) +o ( H ` y ) ) ) |
| 126 | 124 125 | sseqtrrd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ ( suc y C_ dom G /\ ( `' G ` C ) = y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) |
| 127 | 126 | expr | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( `' G ` C ) = y -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) |
| 128 | 127 | a1dd | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( `' G ` C ) = y -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 129 | 111 128 | jaod | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( ( `' G ` C ) e. y \/ ( `' G ` C ) = y ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 130 | 67 129 | biimtrid | |- ( ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) /\ suc y C_ dom G ) -> ( ( `' G ` C ) e. suc y -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 131 | 130 | expimpd | |- ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) -> ( ( suc y C_ dom G /\ ( `' G ` C ) e. suc y ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 132 | 131 | com23 | |- ( ( ( ph /\ ( F ` C ) =/= (/) ) /\ y e. _om ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( suc y C_ dom G /\ ( `' G ` C ) e. suc y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) |
| 133 | 132 | expcom | |- ( y e. _om -> ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( ( y C_ dom G /\ ( `' G ` C ) e. y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` y ) ) -> ( ( suc y C_ dom G /\ ( `' G ` C ) e. suc y ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` suc y ) ) ) ) ) |
| 134 | 49 55 61 65 133 | finds2 | |- ( x e. _om -> ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( x C_ dom G /\ ( `' G ` C ) e. x ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` x ) ) ) ) |
| 135 | 43 134 | vtoclga | |- ( dom G e. _om -> ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( `' G ` C ) e. dom G -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` dom G ) ) ) ) |
| 136 | 35 135 | mpcom | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( `' G ` C ) e. dom G -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` dom G ) ) ) |
| 137 | 33 136 | mpd | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( H ` dom G ) ) |
| 138 | 1 2 3 4 5 6 | cantnfval | |- ( ph -> ( ( A CNF B ) ` F ) = ( H ` dom G ) ) |
| 139 | 138 | adantr | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( A CNF B ) ` F ) = ( H ` dom G ) ) |
| 140 | 137 139 | sseqtrrd | |- ( ( ph /\ ( F ` C ) =/= (/) ) -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( ( A CNF B ) ` F ) ) |
| 141 | onelon | |- ( ( B e. On /\ C e. B ) -> C e. On ) |
|
| 142 | 3 7 141 | syl2anc | |- ( ph -> C e. On ) |
| 143 | oecl | |- ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
|
| 144 | 2 142 143 | syl2anc | |- ( ph -> ( A ^o C ) e. On ) |
| 145 | om0 | |- ( ( A ^o C ) e. On -> ( ( A ^o C ) .o (/) ) = (/) ) |
|
| 146 | 144 145 | syl | |- ( ph -> ( ( A ^o C ) .o (/) ) = (/) ) |
| 147 | 0ss | |- (/) C_ ( ( A CNF B ) ` F ) |
|
| 148 | 146 147 | eqsstrdi | |- ( ph -> ( ( A ^o C ) .o (/) ) C_ ( ( A CNF B ) ` F ) ) |
| 149 | 9 140 148 | pm2.61ne | |- ( ph -> ( ( A ^o C ) .o ( F ` C ) ) C_ ( ( A CNF B ) ` F ) ) |