This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Choice-free proof of bddibl . (Contributed by Brendan Leahy, 2-Nov-2017) (Revised by Brendan Leahy, 6-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bddiblnc | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 2 | 1 | feqmptd | ⊢ ( 𝐹 ∈ MblFn → 𝐹 = ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 = ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 4 | rzal | ⊢ ( dom 𝐹 = ∅ → ∀ 𝑧 ∈ dom 𝐹 ( 𝐹 ‘ 𝑧 ) = 0 ) | |
| 5 | mpteq12 | ⊢ ( ( dom 𝐹 = ∅ ∧ ∀ 𝑧 ∈ dom 𝐹 ( 𝐹 ‘ 𝑧 ) = 0 ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ∅ ↦ 0 ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( dom 𝐹 = ∅ → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ∅ ↦ 0 ) ) |
| 7 | fconstmpt | ⊢ ( ∅ × { 0 } ) = ( 𝑧 ∈ ∅ ↦ 0 ) | |
| 8 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 9 | ibl0 | ⊢ ( ∅ ∈ dom vol → ( ∅ × { 0 } ) ∈ 𝐿1 ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ∅ × { 0 } ) ∈ 𝐿1 |
| 11 | 7 10 | eqeltrri | ⊢ ( 𝑧 ∈ ∅ ↦ 0 ) ∈ 𝐿1 |
| 12 | 6 11 | eqeltrdi | ⊢ ( dom 𝐹 = ∅ → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ dom 𝐹 = ∅ ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 14 | r19.2z | ⊢ ( ( dom 𝐹 ≠ ∅ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) | |
| 15 | 14 | anim1i | ⊢ ( ( ( dom 𝐹 ≠ ∅ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑥 ∈ ℝ ) ) |
| 16 | 15 | an31s | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ dom 𝐹 ≠ ∅ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑥 ∈ ℝ ) ) |
| 17 | 1 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 19 | 18 | absge0d | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 | 0red | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → 0 ∈ ℝ ) | |
| 21 | 18 | abscld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 22 | simplr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ ) | |
| 23 | letr | ⊢ ( ( 0 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 0 ≤ 𝑥 ) ) | |
| 24 | 20 21 22 23 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 0 ≤ 𝑥 ) ) |
| 25 | 19 24 | mpand | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → 0 ≤ 𝑥 ) ) |
| 26 | 25 | rexlimdva | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → 0 ≤ 𝑥 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) → ( 𝑥 ∈ ℝ → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → 0 ≤ 𝑥 ) ) ) |
| 28 | 27 | com23 | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → ( 𝑥 ∈ ℝ → 0 ≤ 𝑥 ) ) ) |
| 29 | 28 | imp32 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑥 ∈ ℝ ) ) → 0 ≤ 𝑥 ) |
| 30 | 16 29 | sylan2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ dom 𝐹 ≠ ∅ ) ) → 0 ≤ 𝑥 ) |
| 31 | 30 | anassrs | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ dom 𝐹 ≠ ∅ ) → 0 ≤ 𝑥 ) |
| 32 | an32 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 0 ≤ 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) | |
| 33 | id | ⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ MblFn ) | |
| 34 | 2 33 | eqeltrrd | ⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ MblFn ) |
| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ MblFn ) |
| 36 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 37 | 36 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 38 | 37 | recld | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 39 | 38 | rexrd | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 40 | 39 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 41 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 42 | elxrge0 | ⊢ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 43 | 40 41 42 | sylanbrc | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
| 44 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 45 | 44 | a1i | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 46 | 43 45 | ifclda | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 47 | 46 | fmpttd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 48 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → dom 𝐹 ∈ dom vol ) |
| 50 | simplr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( vol ‘ dom 𝐹 ) ∈ ℝ ) | |
| 51 | elrege0 | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) | |
| 52 | 51 | biimpri | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
| 53 | 52 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
| 54 | itg2const | ⊢ ( ( dom 𝐹 ∈ dom vol ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) = ( 𝑥 · ( vol ‘ dom 𝐹 ) ) ) | |
| 55 | 49 50 53 54 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) = ( 𝑥 · ( vol ‘ dom 𝐹 ) ) ) |
| 56 | simprll | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) | |
| 57 | 56 50 | remulcld | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑥 · ( vol ‘ dom 𝐹 ) ) ∈ ℝ ) |
| 58 | 55 57 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ) |
| 59 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 60 | elxrge0 | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) ) | |
| 61 | 60 | biimpri | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
| 62 | 59 61 | sylan | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
| 63 | 62 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
| 65 | ifcl | ⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ∈ ( 0 [,] +∞ ) ) | |
| 66 | 64 44 65 | sylancl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 67 | 66 | fmpttd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 68 | ifan | ⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) | |
| 69 | 1 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 70 | 69 | ffvelcdmda | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 71 | 70 | recld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 72 | 70 | abscld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 73 | 56 | adantr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ ) |
| 74 | 70 | releabsd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 75 | 2fveq3 | ⊢ ( 𝑦 = 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 76 | 75 | breq1d | ⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
| 77 | 76 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 78 | 77 | adantll | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 79 | 78 | adantll | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 80 | 71 72 73 74 79 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 81 | simprlr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 0 ≤ 𝑥 ) | |
| 82 | 81 | adantr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → 0 ≤ 𝑥 ) |
| 83 | breq1 | ⊢ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 84 | breq1 | ⊢ ( 0 = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 85 | 83 84 | ifboth | ⊢ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 86 | 80 82 85 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 87 | iftrue | ⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) | |
| 88 | 87 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
| 89 | iftrue | ⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) = 𝑥 ) | |
| 90 | 89 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) = 𝑥 ) |
| 91 | 86 88 90 | 3brtr4d | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 92 | 91 | ex | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 93 | 0le0 | ⊢ 0 ≤ 0 | |
| 94 | 93 | a1i | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → 0 ≤ 0 ) |
| 95 | iffalse | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) | |
| 96 | iffalse | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) = 0 ) | |
| 97 | 94 95 96 | 3brtr4d | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 98 | 92 97 | pm2.61d1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 99 | 68 98 | eqbrtrid | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 100 | 99 | ralrimivw | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 101 | reex | ⊢ ℝ ∈ V | |
| 102 | 101 | a1i | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ℝ ∈ V ) |
| 103 | eqidd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 104 | eqidd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) | |
| 105 | 102 46 66 103 104 | ofrfval2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 106 | 100 105 | mpbird | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 107 | itg2le | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) | |
| 108 | 47 67 106 107 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
| 109 | itg2lecl | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) | |
| 110 | 47 58 108 109 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
| 111 | 38 | renegcld | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 112 | 111 | rexrd | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 113 | 112 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 114 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 115 | elxrge0 | ⊢ ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 116 | 113 114 115 | sylanbrc | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
| 117 | 44 | a1i | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 118 | 116 117 | ifclda | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 119 | 118 | fmpttd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 120 | ifan | ⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) | |
| 121 | 71 | renegcld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 122 | 71 | recnd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 123 | 122 | abscld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 124 | 121 | leabsd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 125 | 122 | absnegd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 126 | 124 125 | breqtrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 127 | absrele | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 128 | 70 127 | syl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 129 | 121 123 72 126 128 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 130 | 121 72 73 129 79 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 131 | breq1 | ⊢ ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 132 | breq1 | ⊢ ( 0 = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 133 | 131 132 | ifboth | ⊢ ( ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 134 | 130 82 133 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 135 | iftrue | ⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) | |
| 136 | 135 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
| 137 | 134 136 90 | 3brtr4d | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 138 | 137 | ex | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 139 | iffalse | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) | |
| 140 | 94 139 96 | 3brtr4d | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 141 | 138 140 | pm2.61d1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 142 | 120 141 | eqbrtrid | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 143 | 142 | ralrimivw | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 144 | eqidd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 145 | 102 118 66 144 104 | ofrfval2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 146 | 143 145 | mpbird | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 147 | itg2le | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) | |
| 148 | 119 67 146 147 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
| 149 | itg2lecl | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) | |
| 150 | 119 58 148 149 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
| 151 | 110 150 | jca | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 152 | 37 | imcld | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 153 | 152 | rexrd | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 154 | 153 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 155 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 156 | elxrge0 | ⊢ ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 157 | 154 155 156 | sylanbrc | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
| 158 | 44 | a1i | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 159 | 157 158 | ifclda | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 160 | 159 | fmpttd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 161 | ifan | ⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) | |
| 162 | 70 | imcld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 163 | 162 | recnd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 164 | 163 | abscld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 165 | 162 | leabsd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 166 | absimle | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 167 | 70 166 | syl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 168 | 162 164 72 165 167 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 169 | 162 72 73 168 79 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 170 | breq1 | ⊢ ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 171 | breq1 | ⊢ ( 0 = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 172 | 170 171 | ifboth | ⊢ ( ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 173 | 169 82 172 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 174 | iftrue | ⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) | |
| 175 | 174 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
| 176 | 173 175 90 | 3brtr4d | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 177 | 176 | ex | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 178 | iffalse | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) | |
| 179 | 94 178 96 | 3brtr4d | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 180 | 177 179 | pm2.61d1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 181 | 161 180 | eqbrtrid | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 182 | 181 | ralrimivw | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 183 | eqidd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 184 | 102 159 66 183 104 | ofrfval2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 185 | 182 184 | mpbird | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 186 | itg2le | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) | |
| 187 | 160 67 185 186 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
| 188 | itg2lecl | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) | |
| 189 | 160 58 187 188 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
| 190 | 152 | renegcld | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 191 | 190 | rexrd | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 192 | 191 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 193 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 194 | elxrge0 | ⊢ ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 195 | 192 193 194 | sylanbrc | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
| 196 | 44 | a1i | ⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 197 | 195 196 | ifclda | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 198 | 197 | fmpttd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 199 | ifan | ⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) | |
| 200 | 162 | renegcld | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 201 | 200 | leabsd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 202 | 163 | absnegd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 203 | 201 202 | breqtrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 204 | 200 164 72 203 167 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 205 | 200 72 73 204 79 | letrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 206 | breq1 | ⊢ ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 207 | breq1 | ⊢ ( 0 = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) | |
| 208 | 206 207 | ifboth | ⊢ ( ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 209 | 205 82 208 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
| 210 | iftrue | ⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) | |
| 211 | 210 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
| 212 | 209 211 90 | 3brtr4d | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 213 | 212 | ex | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 214 | iffalse | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) | |
| 215 | 94 214 96 | 3brtr4d | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 216 | 213 215 | pm2.61d1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 217 | 199 216 | eqbrtrid | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 218 | 217 | ralrimivw | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
| 219 | eqidd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 220 | 102 197 66 219 104 | ofrfval2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 221 | 218 220 | mpbird | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
| 222 | itg2le | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) | |
| 223 | 198 67 221 222 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
| 224 | itg2lecl | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) | |
| 225 | 198 58 223 224 | syl3anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
| 226 | 189 225 | jca | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 227 | eqid | ⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 228 | eqid | ⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 229 | eqid | ⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 230 | eqid | ⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) | |
| 231 | 227 228 229 230 70 | iblcnlem1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ↔ ( ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
| 232 | 35 151 226 231 | mpbir3and | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 233 | 32 232 | sylan2b | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 0 ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 234 | 233 | anassrs | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑥 ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 235 | 31 234 | syldan | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ dom 𝐹 ≠ ∅ ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 236 | 13 235 | pm2.61dane | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 237 | 236 | rexlimdvaa | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) ) |
| 238 | 237 | 3impia | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 239 | 3 238 | eqeltrd | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) |