This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function is integrable on any measurable set. (Unlike iblconst , this does not require A to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ibl0 | ⊢ ( 𝐴 ∈ dom vol → ( 𝐴 × { 0 } ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | mbfconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ dom vol → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | ine0 | ⊢ i ≠ 0 | |
| 6 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 8 | expclz | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 9 | expne0i | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) | |
| 10 | 8 9 | div0d | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
| 11 | 4 5 7 10 | mp3an12i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ 0 ) ) |
| 13 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 14 | 12 13 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = 0 ) |
| 15 | 14 | itgvallem3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = 0 ) |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | 15 16 | eqeltrdi | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝐴 ∈ dom vol → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 19 | eqidd | ⊢ ( 𝐴 ∈ dom vol → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 20 | eqidd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) | |
| 21 | c0ex | ⊢ 0 ∈ V | |
| 22 | 21 | fconst | ⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } |
| 23 | fdm | ⊢ ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → dom ( 𝐴 × { 0 } ) = 𝐴 ) | |
| 24 | 22 23 | mp1i | ⊢ ( 𝐴 ∈ dom vol → dom ( 𝐴 × { 0 } ) = 𝐴 ) |
| 25 | 21 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 27 | 19 20 24 26 | isibl | ⊢ ( 𝐴 ∈ dom vol → ( ( 𝐴 × { 0 } ) ∈ 𝐿1 ↔ ( ( 𝐴 × { 0 } ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 28 | 3 18 27 | mpbir2and | ⊢ ( 𝐴 ∈ dom vol → ( 𝐴 × { 0 } ) ∈ 𝐿1 ) |