This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absrele | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | sqge0d | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
| 3 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | resqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 5 | 1 | resqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 6 | 4 5 | addge01d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 7 | 2 6 | mpbid | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 8 | 3 | sqge0d | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) |
| 9 | 4 5 | readdcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ) |
| 10 | 4 5 8 2 | addge0d | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 11 | sqrtle | ⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ∧ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) ) | |
| 12 | 4 8 9 10 11 | syl22anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
| 13 | 7 12 | mpbid | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 14 | absre | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 15 | 3 14 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 16 | absval2 | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | |
| 17 | 13 15 16 | 3brtr4d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |