This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iblcnlem . (Contributed by Mario Carneiro, 6-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcnlem.r | ⊢ 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| itgcnlem.s | ⊢ 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) | ||
| itgcnlem.t | ⊢ 𝑇 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) | ||
| itgcnlem.u | ⊢ 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) | ||
| itgcnlem1.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | iblcnlem1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnlem.r | ⊢ 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| 2 | itgcnlem.s | ⊢ 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| 3 | itgcnlem.t | ⊢ 𝑇 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) | |
| 4 | itgcnlem.u | ⊢ 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) | |
| 5 | itgcnlem1.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | |
| 8 | 6 7 5 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | 1ex | ⊢ 1 ∈ V | |
| 11 | ax-icn | ⊢ i ∈ ℂ | |
| 12 | exp0 | ⊢ ( i ∈ ℂ → ( i ↑ 0 ) = 1 ) | |
| 13 | 11 12 | ax-mp | ⊢ ( i ↑ 0 ) = 1 |
| 14 | 13 | itgvallem | ⊢ ( 𝑘 = 0 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = 0 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 16 | exp1 | ⊢ ( i ∈ ℂ → ( i ↑ 1 ) = i ) | |
| 17 | 11 16 | ax-mp | ⊢ ( i ↑ 1 ) = i |
| 18 | 17 | itgvallem | ⊢ ( 𝑘 = 1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) |
| 19 | 18 | eleq1d | ⊢ ( 𝑘 = 1 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 20 | 9 10 15 19 | ralpr | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 21 | 5 | div1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / 1 ) = 𝐵 ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / 1 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 23 | 22 | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 24 | 23 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) |
| 26 | 25 1 | eqtr4di | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) = 𝑅 ) |
| 27 | 26 | eleq1d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑅 ∈ ℝ ) ) |
| 28 | imval | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / i ) ) ) | |
| 29 | 5 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / i ) ) ) |
| 30 | 29 | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) |
| 31 | 30 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) |
| 32 | 31 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ) |
| 33 | 3 32 | eqtr2id | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) = 𝑇 ) |
| 34 | 33 | eleq1d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑇 ∈ ℝ ) ) |
| 35 | 27 34 | anbi12d | ⊢ ( 𝜑 → ( ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 1 ) ) ) , ( ℜ ‘ ( 𝐵 / 1 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / i ) ) ) , ( ℜ ‘ ( 𝐵 / i ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( 𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ ) ) ) |
| 36 | 20 35 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 0 , 1 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( 𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ ) ) ) |
| 37 | 2ex | ⊢ 2 ∈ V | |
| 38 | 3ex | ⊢ 3 ∈ V | |
| 39 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 40 | 39 | itgvallem | ⊢ ( 𝑘 = 2 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
| 41 | 40 | eleq1d | ⊢ ( 𝑘 = 2 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 42 | i3 | ⊢ ( i ↑ 3 ) = - i | |
| 43 | 42 | itgvallem | ⊢ ( 𝑘 = 3 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
| 44 | 43 | eleq1d | ⊢ ( 𝑘 = 3 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 45 | 37 38 41 44 | ralpr | ⊢ ( ∀ 𝑘 ∈ { 2 , 3 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 46 | 5 | renegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 47 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 48 | 47 | negnegi | ⊢ - - 1 = 1 |
| 49 | 48 | oveq2i | ⊢ ( - 𝐵 / - - 1 ) = ( - 𝐵 / 1 ) |
| 50 | 5 | negcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 51 | 50 | div1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / 1 ) = - 𝐵 ) |
| 52 | 49 51 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - 1 ) = - 𝐵 ) |
| 53 | 47 | negcli | ⊢ - 1 ∈ ℂ |
| 54 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 55 | div2neg | ⊢ ( ( 𝐵 ∈ ℂ ∧ - 1 ∈ ℂ ∧ - 1 ≠ 0 ) → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) | |
| 56 | 53 54 55 | mp3an23 | ⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
| 57 | 5 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - 1 ) = ( 𝐵 / - 1 ) ) |
| 58 | 52 57 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 = ( 𝐵 / - 1 ) ) |
| 59 | 58 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ ( 𝐵 / - 1 ) ) ) |
| 60 | 46 59 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / - 1 ) ) ) |
| 61 | 60 | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) |
| 62 | 61 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) |
| 63 | 62 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ) |
| 64 | 2 63 | eqtr2id | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) = 𝑆 ) |
| 65 | 64 | eleq1d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑆 ∈ ℝ ) ) |
| 66 | imval | ⊢ ( - 𝐵 ∈ ℂ → ( ℑ ‘ - 𝐵 ) = ( ℜ ‘ ( - 𝐵 / i ) ) ) | |
| 67 | 50 66 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = ( ℜ ‘ ( - 𝐵 / i ) ) ) |
| 68 | 5 | imnegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
| 69 | 11 | negnegi | ⊢ - - i = i |
| 70 | 69 | eqcomi | ⊢ i = - - i |
| 71 | 70 | oveq2i | ⊢ ( - 𝐵 / i ) = ( - 𝐵 / - - i ) |
| 72 | 11 | negcli | ⊢ - i ∈ ℂ |
| 73 | ine0 | ⊢ i ≠ 0 | |
| 74 | 11 73 | negne0i | ⊢ - i ≠ 0 |
| 75 | div2neg | ⊢ ( ( 𝐵 ∈ ℂ ∧ - i ∈ ℂ ∧ - i ≠ 0 ) → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) | |
| 76 | 72 74 75 | mp3an23 | ⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
| 77 | 5 76 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / - - i ) = ( 𝐵 / - i ) ) |
| 78 | 71 77 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 / i ) = ( 𝐵 / - i ) ) |
| 79 | 78 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( - 𝐵 / i ) ) = ( ℜ ‘ ( 𝐵 / - i ) ) ) |
| 80 | 67 68 79 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( 𝐵 / - i ) ) ) |
| 81 | 80 | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) |
| 82 | 81 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) |
| 83 | 82 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ) |
| 84 | 4 83 | eqtr2id | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) = 𝑈 ) |
| 85 | 84 | eleq1d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑈 ∈ ℝ ) ) |
| 86 | 65 85 | anbi12d | ⊢ ( 𝜑 → ( ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - 1 ) ) ) , ( ℜ ‘ ( 𝐵 / - 1 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / - i ) ) ) , ( ℜ ‘ ( 𝐵 / - i ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( 𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) |
| 87 | 45 86 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 2 , 3 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( 𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) |
| 88 | 36 87 | anbi12d | ⊢ ( 𝜑 → ( ( ∀ 𝑘 ∈ { 0 , 1 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ∧ ∀ 𝑘 ∈ { 2 , 3 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( ( 𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ ) ∧ ( 𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| 89 | fz0to3un2pr | ⊢ ( 0 ... 3 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) | |
| 90 | 89 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ∀ 𝑘 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 91 | ralunb | ⊢ ( ∀ 𝑘 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ∧ ∀ 𝑘 ∈ { 2 , 3 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) | |
| 92 | 90 91 | bitri | ⊢ ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ∧ ∀ 𝑘 ∈ { 2 , 3 } ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 93 | an4 | ⊢ ( ( ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ↔ ( ( 𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ ) ∧ ( 𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) | |
| 94 | 88 92 93 | 3bitr4g | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| 95 | 94 | anbi2d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) ) |
| 96 | 3anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) | |
| 97 | 95 96 | bitr4di | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| 98 | 8 97 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |