This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function distributes under conjugation. (The condition that Re ( A ) =/= 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -u 1 and 1 , though.) (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atancj | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) | |
| 3 | fveq2 | ⊢ ( 𝐴 = - i → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ - i ) ) | |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | 4 | renegi | ⊢ ( ℜ ‘ - i ) = - ( ℜ ‘ i ) |
| 6 | rei | ⊢ ( ℜ ‘ i ) = 0 | |
| 7 | 6 | negeqi | ⊢ - ( ℜ ‘ i ) = - 0 |
| 8 | neg0 | ⊢ - 0 = 0 | |
| 9 | 5 7 8 | 3eqtri | ⊢ ( ℜ ‘ - i ) = 0 |
| 10 | 3 9 | eqtrdi | ⊢ ( 𝐴 = - i → ( ℜ ‘ 𝐴 ) = 0 ) |
| 11 | 10 | necon3i | ⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ - i ) |
| 12 | 2 11 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ≠ - i ) |
| 13 | fveq2 | ⊢ ( 𝐴 = i → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ i ) ) | |
| 14 | 13 6 | eqtrdi | ⊢ ( 𝐴 = i → ( ℜ ‘ 𝐴 ) = 0 ) |
| 15 | 14 | necon3i | ⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ i ) |
| 16 | 2 15 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ≠ i ) |
| 17 | atandm | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) | |
| 18 | 1 12 16 17 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ dom arctan ) |
| 19 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 20 | 4 19 | ax-mp | ⊢ ( i / 2 ) ∈ ℂ |
| 21 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 22 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 23 | 4 1 22 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 24 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 25 | 21 23 24 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 26 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 27 | 18 26 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| 28 | 27 | simp2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 29 | 25 28 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 30 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 31 | 21 23 30 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 32 | 27 | simp3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 33 | 31 32 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 34 | 29 33 | subcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 35 | cjmul | ⊢ ( ( ( i / 2 ) ∈ ℂ ∧ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) → ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) | |
| 36 | 20 34 35 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 37 | 2ne0 | ⊢ 2 ≠ 0 | |
| 38 | 2cn | ⊢ 2 ∈ ℂ | |
| 39 | 4 38 | cjdivi | ⊢ ( 2 ≠ 0 → ( ∗ ‘ ( i / 2 ) ) = ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) ) |
| 40 | 37 39 | ax-mp | ⊢ ( ∗ ‘ ( i / 2 ) ) = ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) |
| 41 | divneg | ⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( i / 2 ) = ( - i / 2 ) ) | |
| 42 | 4 38 37 41 | mp3an | ⊢ - ( i / 2 ) = ( - i / 2 ) |
| 43 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 44 | 2re | ⊢ 2 ∈ ℝ | |
| 45 | cjre | ⊢ ( 2 ∈ ℝ → ( ∗ ‘ 2 ) = 2 ) | |
| 46 | 44 45 | ax-mp | ⊢ ( ∗ ‘ 2 ) = 2 |
| 47 | 43 46 | oveq12i | ⊢ ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) = ( - i / 2 ) |
| 48 | 42 47 | eqtr4i | ⊢ - ( i / 2 ) = ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) |
| 49 | 40 48 | eqtr4i | ⊢ ( ∗ ‘ ( i / 2 ) ) = - ( i / 2 ) |
| 50 | 49 | oveq1i | ⊢ ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( - ( i / 2 ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 51 | 34 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 52 | mulneg12 | ⊢ ( ( ( i / 2 ) ∈ ℂ ∧ ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ∈ ℂ ) → ( - ( i / 2 ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) | |
| 53 | 20 51 52 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - ( i / 2 ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 54 | 50 53 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 55 | cjsub | ⊢ ( ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ∧ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) − ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) | |
| 56 | 29 33 55 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) − ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 57 | imsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) | |
| 58 | 21 23 57 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 59 | reim | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) | |
| 60 | 59 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 61 | 60 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 62 | 58 61 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 63 | df-neg | ⊢ - ( ℜ ‘ 𝐴 ) = ( 0 − ( ℜ ‘ 𝐴 ) ) | |
| 64 | im1 | ⊢ ( ℑ ‘ 1 ) = 0 | |
| 65 | 64 | oveq1i | ⊢ ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( 0 − ( ℜ ‘ 𝐴 ) ) |
| 66 | 63 65 | eqtr4i | ⊢ - ( ℜ ‘ 𝐴 ) = ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) |
| 67 | 62 66 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = - ( ℜ ‘ 𝐴 ) ) |
| 68 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 69 | 68 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 70 | 69 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 71 | 70 2 | negne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 72 | 67 71 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) ≠ 0 ) |
| 73 | logcj | ⊢ ( ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) | |
| 74 | 25 72 73 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 75 | cjsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝐴 ) ) ) ) | |
| 76 | 21 23 75 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝐴 ) ) ) ) |
| 77 | 1re | ⊢ 1 ∈ ℝ | |
| 78 | cjre | ⊢ ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 ) | |
| 79 | 77 78 | mp1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 1 ) = 1 ) |
| 80 | cjmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) | |
| 81 | 4 1 80 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
| 82 | 43 | oveq1i | ⊢ ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · ( ∗ ‘ 𝐴 ) ) |
| 83 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 84 | 83 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 85 | mulneg1 | ⊢ ( ( i ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( ∗ ‘ 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) | |
| 86 | 4 84 85 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - i · ( ∗ ‘ 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 87 | 82 86 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 88 | 81 87 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( i · 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 89 | 79 88 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝐴 ) ) ) = ( 1 − - ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 90 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 91 | 4 84 90 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 92 | subneg | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 − - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 93 | 21 91 92 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 94 | 76 89 93 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 95 | 94 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 96 | 74 95 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 97 | imadd | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) | |
| 98 | 21 23 97 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 99 | 60 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( 0 + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 100 | 64 | oveq1i | ⊢ ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) = ( 0 + ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 101 | 99 100 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 102 | 70 | addlidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 103 | 98 101 102 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 104 | 103 2 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) ≠ 0 ) |
| 105 | logcj | ⊢ ( ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) | |
| 106 | 31 104 105 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 107 | cjadd | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) + ( ∗ ‘ ( i · 𝐴 ) ) ) ) | |
| 108 | 21 23 107 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) + ( ∗ ‘ ( i · 𝐴 ) ) ) ) |
| 109 | 79 88 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ 1 ) + ( ∗ ‘ ( i · 𝐴 ) ) ) = ( 1 + - ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 110 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 + - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 111 | 21 91 110 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 112 | 108 109 111 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 113 | 112 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 114 | 106 113 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 115 | 96 114 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) − ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 116 | 56 115 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 117 | 116 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = - ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 118 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 119 | 21 91 118 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 120 | atandmcj | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ 𝐴 ) ∈ dom arctan ) | |
| 121 | 18 120 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ dom arctan ) |
| 122 | atandm2 | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan ↔ ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ∧ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) ) | |
| 123 | 122 | simp3bi | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 124 | 121 123 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 125 | 119 124 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 126 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 127 | 21 91 126 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 128 | 122 | simp2bi | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 129 | 121 128 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 130 | 127 129 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 131 | 125 130 | negsubdi2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 132 | 117 131 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 133 | 132 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 134 | 36 54 133 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 135 | atanval | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) | |
| 136 | 18 135 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 137 | 136 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 138 | atanval | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 139 | 121 138 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 140 | 134 137 139 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 141 | 18 140 | jca | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) |