This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandmcj | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ 𝐴 ) ∈ dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm3 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 3 | 2 | cjcld | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 4 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 5 | cjexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ∗ ‘ ( 𝐴 ↑ 2 ) ) = ( ( ∗ ‘ 𝐴 ) ↑ 2 ) ) | |
| 6 | 2 4 5 | sylancl | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ ( 𝐴 ↑ 2 ) ) = ( ( ∗ ‘ 𝐴 ) ↑ 2 ) ) |
| 7 | 2 | sqcld | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 8 | 7 | cjcjd | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ) = ( 𝐴 ↑ 2 ) ) |
| 9 | 1 | simprbi | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
| 10 | 8 9 | eqnetrd | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ) ≠ - 1 ) |
| 11 | fveq2 | ⊢ ( ( ∗ ‘ ( 𝐴 ↑ 2 ) ) = - 1 → ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ) = ( ∗ ‘ - 1 ) ) | |
| 12 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 13 | cjre | ⊢ ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ∗ ‘ - 1 ) = - 1 |
| 15 | 11 14 | eqtrdi | ⊢ ( ( ∗ ‘ ( 𝐴 ↑ 2 ) ) = - 1 → ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ) = - 1 ) |
| 16 | 15 | necon3i | ⊢ ( ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ) ≠ - 1 → ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ≠ - 1 ) |
| 17 | 10 16 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ ( 𝐴 ↑ 2 ) ) ≠ - 1 ) |
| 18 | 6 17 | eqnetrrd | ⊢ ( 𝐴 ∈ dom arctan → ( ( ∗ ‘ 𝐴 ) ↑ 2 ) ≠ - 1 ) |
| 19 | atandm3 | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan ↔ ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ( ∗ ‘ 𝐴 ) ↑ 2 ) ≠ - 1 ) ) | |
| 20 | 3 18 19 | sylanbrc | ⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ 𝐴 ) ∈ dom arctan ) |