This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | cjadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) ) |
| 4 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + - 𝐵 ) ) = ( ∗ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 6 | cjneg | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ - 𝐵 ) = - ( ∗ ‘ 𝐵 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ - 𝐵 ) = - ( ∗ ‘ 𝐵 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + - ( ∗ ‘ 𝐵 ) ) ) |
| 9 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | cjcl | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) | |
| 11 | negsub | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + - ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + - ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |
| 14 | 3 5 13 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |