This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanneg | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 3 | 2 | simp1bi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 4 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 5 | 1 3 4 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 − - ( i · 𝐴 ) ) ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 9 | 1 3 8 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
| 10 | subneg | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) | |
| 11 | 7 9 10 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 12 | 6 11 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 14 | 5 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 + - ( i · 𝐴 ) ) ) |
| 15 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) | |
| 16 | 7 9 15 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
| 19 | 13 18 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 20 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 21 | 7 9 20 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 22 | 2 | simp2bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 23 | 21 22 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 24 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 25 | 7 9 24 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 26 | 2 | simp3bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 27 | 25 26 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 28 | 23 27 | negsubdi2d | ⊢ ( 𝐴 ∈ dom arctan → - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 29 | 19 28 | eqtr4d | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) ) = - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) ) ) = ( ( i / 2 ) · - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 31 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 32 | 1 31 | ax-mp | ⊢ ( i / 2 ) ∈ ℂ |
| 33 | 23 27 | subcld | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 34 | mulneg2 | ⊢ ( ( ( i / 2 ) ∈ ℂ ∧ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) → ( ( i / 2 ) · - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = - ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) | |
| 35 | 32 33 34 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( ( i / 2 ) · - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = - ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 36 | 30 35 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) ) ) = - ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 37 | atandmneg | ⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) | |
| 38 | atanval | ⊢ ( - 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) ) ) ) |
| 40 | atanval | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) | |
| 41 | 40 | negeqd | ⊢ ( 𝐴 ∈ dom arctan → - ( arctan ‘ 𝐴 ) = - ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 42 | 36 39 41 | 3eqtr4d | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |