This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function distributes under conjugation. (The condition that Re ( A ) =/= 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -u 1 and 1 , though.) (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atancj | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. CC ) |
|
| 2 | simpr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
|
| 3 | fveq2 | |- ( A = -u _i -> ( Re ` A ) = ( Re ` -u _i ) ) |
|
| 4 | ax-icn | |- _i e. CC |
|
| 5 | 4 | renegi | |- ( Re ` -u _i ) = -u ( Re ` _i ) |
| 6 | rei | |- ( Re ` _i ) = 0 |
|
| 7 | 6 | negeqi | |- -u ( Re ` _i ) = -u 0 |
| 8 | neg0 | |- -u 0 = 0 |
|
| 9 | 5 7 8 | 3eqtri | |- ( Re ` -u _i ) = 0 |
| 10 | 3 9 | eqtrdi | |- ( A = -u _i -> ( Re ` A ) = 0 ) |
| 11 | 10 | necon3i | |- ( ( Re ` A ) =/= 0 -> A =/= -u _i ) |
| 12 | 2 11 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= -u _i ) |
| 13 | fveq2 | |- ( A = _i -> ( Re ` A ) = ( Re ` _i ) ) |
|
| 14 | 13 6 | eqtrdi | |- ( A = _i -> ( Re ` A ) = 0 ) |
| 15 | 14 | necon3i | |- ( ( Re ` A ) =/= 0 -> A =/= _i ) |
| 16 | 2 15 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= _i ) |
| 17 | atandm | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
|
| 18 | 1 12 16 17 | syl3anbrc | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. dom arctan ) |
| 19 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 20 | 4 19 | ax-mp | |- ( _i / 2 ) e. CC |
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 23 | 4 1 22 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e. CC ) |
| 24 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 25 | 21 23 24 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 26 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 27 | 18 26 | sylib | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 28 | 27 | simp2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 29 | 25 28 | logcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 30 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 31 | 21 23 30 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 32 | 27 | simp3d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 33 | 31 32 | logcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 34 | 29 33 | subcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 35 | cjmul | |- ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
|
| 36 | 20 34 35 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 37 | 2ne0 | |- 2 =/= 0 |
|
| 38 | 2cn | |- 2 e. CC |
|
| 39 | 4 38 | cjdivi | |- ( 2 =/= 0 -> ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) ) |
| 40 | 37 39 | ax-mp | |- ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) |
| 41 | divneg | |- ( ( _i e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _i / 2 ) = ( -u _i / 2 ) ) |
|
| 42 | 4 38 37 41 | mp3an | |- -u ( _i / 2 ) = ( -u _i / 2 ) |
| 43 | cji | |- ( * ` _i ) = -u _i |
|
| 44 | 2re | |- 2 e. RR |
|
| 45 | cjre | |- ( 2 e. RR -> ( * ` 2 ) = 2 ) |
|
| 46 | 44 45 | ax-mp | |- ( * ` 2 ) = 2 |
| 47 | 43 46 | oveq12i | |- ( ( * ` _i ) / ( * ` 2 ) ) = ( -u _i / 2 ) |
| 48 | 42 47 | eqtr4i | |- -u ( _i / 2 ) = ( ( * ` _i ) / ( * ` 2 ) ) |
| 49 | 40 48 | eqtr4i | |- ( * ` ( _i / 2 ) ) = -u ( _i / 2 ) |
| 50 | 49 | oveq1i | |- ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 51 | 34 | cjcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) |
| 52 | mulneg12 | |- ( ( ( _i / 2 ) e. CC /\ ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
|
| 53 | 20 51 52 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 54 | 50 53 | eqtrid | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 55 | cjsub | |- ( ( ( log ` ( 1 - ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 56 | 29 33 55 | syl2anc | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 57 | imsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
|
| 58 | 21 23 57 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
| 59 | reim | |- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
|
| 60 | 59 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 61 | 60 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` 1 ) - ( Re ` A ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
| 62 | 58 61 | eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Re ` A ) ) ) |
| 63 | df-neg | |- -u ( Re ` A ) = ( 0 - ( Re ` A ) ) |
|
| 64 | im1 | |- ( Im ` 1 ) = 0 |
|
| 65 | 64 | oveq1i | |- ( ( Im ` 1 ) - ( Re ` A ) ) = ( 0 - ( Re ` A ) ) |
| 66 | 63 65 | eqtr4i | |- -u ( Re ` A ) = ( ( Im ` 1 ) - ( Re ` A ) ) |
| 67 | 62 66 | eqtr4di | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = -u ( Re ` A ) ) |
| 68 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 69 | 68 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. RR ) |
| 70 | 69 | recnd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. CC ) |
| 71 | 70 2 | negne0d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( Re ` A ) =/= 0 ) |
| 72 | 67 71 | eqnetrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) |
| 73 | logcj | |- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
|
| 74 | 25 72 73 | syl2anc | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 75 | cjsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) |
|
| 76 | 21 23 75 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) |
| 77 | 1re | |- 1 e. RR |
|
| 78 | cjre | |- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
|
| 79 | 77 78 | mp1i | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` 1 ) = 1 ) |
| 80 | cjmul | |- ( ( _i e. CC /\ A e. CC ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
|
| 81 | 4 1 80 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
| 82 | 43 | oveq1i | |- ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. ( * ` A ) ) |
| 83 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 84 | 83 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. CC ) |
| 85 | mulneg1 | |- ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
|
| 86 | 4 84 85 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 87 | 82 86 | eqtrid | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` _i ) x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 88 | 81 87 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 89 | 79 88 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) = ( 1 - -u ( _i x. ( * ` A ) ) ) ) |
| 90 | mulcl | |- ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( _i x. ( * ` A ) ) e. CC ) |
|
| 91 | 4 84 90 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( * ` A ) ) e. CC ) |
| 92 | subneg | |- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
|
| 93 | 21 91 92 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
| 94 | 76 89 93 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
| 95 | 94 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) |
| 96 | 74 95 | eqtr3d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) |
| 97 | imadd | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
|
| 98 | 21 23 97 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 99 | 60 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) ) |
| 100 | 64 | oveq1i | |- ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) |
| 101 | 99 100 | eqtr4di | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 102 | 70 | addlidd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( Re ` A ) ) |
| 103 | 98 101 102 | 3eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( Re ` A ) ) |
| 104 | 103 2 | eqnetrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) |
| 105 | logcj | |- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
|
| 106 | 31 104 105 | syl2anc | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 107 | cjadd | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) |
|
| 108 | 21 23 107 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) |
| 109 | 79 88 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) = ( 1 + -u ( _i x. ( * ` A ) ) ) ) |
| 110 | negsub | |- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
|
| 111 | 21 91 110 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
| 112 | 108 109 111 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
| 113 | 112 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) |
| 114 | 106 113 | eqtr3d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) |
| 115 | 96 114 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
| 116 | 56 115 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
| 117 | 116 | negeqd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
| 118 | addcl | |- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) |
|
| 119 | 21 91 118 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) |
| 120 | atandmcj | |- ( A e. dom arctan -> ( * ` A ) e. dom arctan ) |
|
| 121 | 18 120 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. dom arctan ) |
| 122 | atandm2 | |- ( ( * ` A ) e. dom arctan <-> ( ( * ` A ) e. CC /\ ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) ) |
|
| 123 | 122 | simp3bi | |- ( ( * ` A ) e. dom arctan -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 124 | 121 123 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 125 | 119 124 | logcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) e. CC ) |
| 126 | subcl | |- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) |
|
| 127 | 21 91 126 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) |
| 128 | 122 | simp2bi | |- ( ( * ` A ) e. dom arctan -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 129 | 121 128 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 130 | 127 129 | logcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) e. CC ) |
| 131 | 125 130 | negsubdi2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) |
| 132 | 117 131 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) |
| 133 | 132 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 134 | 36 54 133 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 135 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 136 | 18 135 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 137 | 136 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 138 | atanval | |- ( ( * ` A ) e. dom arctan -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
|
| 139 | 121 138 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 140 | 134 137 139 | 3eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) |
| 141 | 18 140 | jca | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |