This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logcj | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) | |
| 2 | im0 | ⊢ ( ℑ ‘ 0 ) = 0 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
| 4 | 3 | necon3i | ⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 5 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 7 | efcj | ⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
| 9 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 10 | 4 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) |
| 12 | 8 11 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) |
| 13 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) | |
| 16 | 15 4 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ≠ 0 ) |
| 17 | cjne0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) |
| 19 | 16 18 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ≠ 0 ) |
| 20 | 6 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 21 | 6 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 22 | pire | ⊢ π ∈ ℝ | |
| 23 | 22 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → π ∈ ℝ ) |
| 24 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 25 | 4 24 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 26 | 25 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 27 | rpre | ⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) | |
| 28 | 27 | renegcld | ⊢ ( - 𝐴 ∈ ℝ+ → - - 𝐴 ∈ ℝ ) |
| 29 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - - 𝐴 = 𝐴 ) |
| 31 | 30 | eleq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 32 | 28 31 | imbitrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) ) |
| 33 | lognegb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) | |
| 34 | 4 33 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
| 35 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 37 | 32 34 36 | 3imtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 38 | 37 | necon3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) ) |
| 39 | 15 38 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
| 40 | 39 | necomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → π ≠ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 41 | 21 23 26 40 | leneltd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 42 | ltneg | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 43 | 21 22 42 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 44 | 41 43 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 45 | 6 | imcjd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 46 | 44 45 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π < ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 47 | 25 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 48 | 22 | renegcli | ⊢ - π ∈ ℝ |
| 49 | ltle | ⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 50 | 48 21 49 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 51 | 47 50 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 52 | lenegcon1 | ⊢ ( ( π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 53 | 22 21 52 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 54 | 51 53 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 55 | 45 54 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 56 | ellogrn | ⊢ ( ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ran log ↔ ( ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) | |
| 57 | 20 46 55 56 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ran log ) |
| 58 | logeftb | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ≠ 0 ∧ ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ran log ) → ( ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) ) | |
| 59 | 14 19 57 58 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) ) |
| 60 | 12 59 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) |