This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for class substitution. Class version of sbequ12 . (Contributed by NM, 26-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid | ⊢ ( [ 𝑥 / 𝑥 ] 𝜑 ↔ 𝜑 ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑥 = 𝐴 → ( [ 𝑥 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 1 2 | bitr3id | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |