This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcrex | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | sbcrext | ⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |