This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by NM, 30-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbceq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | sbceq1d | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | dfsbcq | ⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑥 ] 𝜓 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑥 ] 𝜓 ) ) |