This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 , we derive this strong version of ac6 that doesn't require B to be a set. (Contributed by NM, 4-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6s.1 | ⊢ 𝐴 ∈ V | |
| ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ac6s | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 1 | bnd2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 1 4 2 | ac6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 6 | 5 | anim2i | ⊢ ( ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) → ( 𝑧 ⊆ 𝐵 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 7 | 6 | eximi | ⊢ ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 8 | fss | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 9 | 8 | expcom | ⊢ ( 𝑧 ⊆ 𝐵 → ( 𝑓 : 𝐴 ⟶ 𝑧 → 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| 10 | 9 | anim1d | ⊢ ( 𝑧 ⊆ 𝐵 → ( ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 11 | 10 | eximdv | ⊢ ( 𝑧 ⊆ 𝐵 → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝑧 ⊆ 𝐵 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 14 | 3 7 13 | 3syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |