This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frfi | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 Fr 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poeq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅 Po 𝑥 ↔ 𝑅 Po ∅ ) ) | |
| 2 | freq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅 Fr 𝑥 ↔ 𝑅 Fr ∅ ) ) | |
| 3 | 1 2 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑅 Po 𝑥 → 𝑅 Fr 𝑥 ) ↔ ( 𝑅 Po ∅ → 𝑅 Fr ∅ ) ) ) |
| 4 | poeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 Po 𝑥 ↔ 𝑅 Po 𝑦 ) ) | |
| 5 | freq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 Fr 𝑥 ↔ 𝑅 Fr 𝑦 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 Po 𝑥 → 𝑅 Fr 𝑥 ) ↔ ( 𝑅 Po 𝑦 → 𝑅 Fr 𝑦 ) ) ) |
| 7 | poeq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑤 } ) → ( 𝑅 Po 𝑥 ↔ 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ) ) | |
| 8 | freq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑤 } ) → ( 𝑅 Fr 𝑥 ↔ 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑤 } ) → ( ( 𝑅 Po 𝑥 → 𝑅 Fr 𝑥 ) ↔ ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ) ) ) |
| 10 | poeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑅 Po 𝑥 ↔ 𝑅 Po 𝐴 ) ) | |
| 11 | freq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑅 Fr 𝑥 ↔ 𝑅 Fr 𝐴 ) ) | |
| 12 | 10 11 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 Po 𝑥 → 𝑅 Fr 𝑥 ) ↔ ( 𝑅 Po 𝐴 → 𝑅 Fr 𝐴 ) ) ) |
| 13 | fr0 | ⊢ 𝑅 Fr ∅ | |
| 14 | 13 | a1i | ⊢ ( 𝑅 Po ∅ → 𝑅 Fr ∅ ) |
| 15 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑤 } ) | |
| 16 | poss | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑤 } ) → ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Po 𝑦 ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Po 𝑦 ) |
| 18 | 17 | imim1i | ⊢ ( ( 𝑅 Po 𝑦 → 𝑅 Fr 𝑦 ) → ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Fr 𝑦 ) ) |
| 19 | uncom | ⊢ ( 𝑦 ∪ { 𝑤 } ) = ( { 𝑤 } ∪ 𝑦 ) | |
| 20 | 19 | sseq2i | ⊢ ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ↔ 𝑥 ⊆ ( { 𝑤 } ∪ 𝑦 ) ) |
| 21 | ssundif | ⊢ ( 𝑥 ⊆ ( { 𝑤 } ∪ 𝑦 ) ↔ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) | |
| 22 | 20 21 | bitri | ⊢ ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ↔ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) |
| 23 | 22 | anbi1i | ⊢ ( ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑥 ≠ ∅ ) ↔ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) |
| 24 | breq1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 𝑅 𝑤 ↔ 𝑧 𝑅 𝑤 ) ) | |
| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝑥 𝑣 𝑅 𝑤 ↔ ∃ 𝑧 ∈ 𝑥 𝑧 𝑅 𝑤 ) |
| 26 | simpllr | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → 𝑅 Fr 𝑦 ) | |
| 27 | simplrl | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) | |
| 28 | poss | ⊢ ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) → ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Po 𝑥 ) ) | |
| 29 | 28 | impcom | ⊢ ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ) → 𝑅 Po 𝑥 ) |
| 30 | 22 29 | sylan2br | ⊢ ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) → 𝑅 Po 𝑥 ) |
| 31 | 30 | ad2ant2r | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → 𝑅 Po 𝑥 ) |
| 32 | simpr1 | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) | |
| 33 | simpr2 | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → 𝑧 𝑅 𝑤 ) | |
| 34 | poirr | ⊢ ( ( 𝑅 Po 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ¬ 𝑤 𝑅 𝑤 ) | |
| 35 | 34 | 3ad2antr3 | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ¬ 𝑤 𝑅 𝑤 ) |
| 36 | nbrne2 | ⊢ ( ( 𝑧 𝑅 𝑤 ∧ ¬ 𝑤 𝑅 𝑤 ) → 𝑧 ≠ 𝑤 ) | |
| 37 | 33 35 36 | syl2anc | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → 𝑧 ≠ 𝑤 ) |
| 38 | eldifsn | ⊢ ( 𝑧 ∈ ( 𝑥 ∖ { 𝑤 } ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) | |
| 39 | 32 37 38 | sylanbrc | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → 𝑧 ∈ ( 𝑥 ∖ { 𝑤 } ) ) |
| 40 | 31 39 | sylan | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → 𝑧 ∈ ( 𝑥 ∖ { 𝑤 } ) ) |
| 41 | 40 | ne0d | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ ) |
| 42 | difss | ⊢ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑥 | |
| 43 | vex | ⊢ 𝑥 ∈ V | |
| 44 | 43 | difexi | ⊢ ( 𝑥 ∖ { 𝑤 } ) ∈ V |
| 45 | fri | ⊢ ( ( ( ( 𝑥 ∖ { 𝑤 } ) ∈ V ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ ) ) → ∃ 𝑢 ∈ ( 𝑥 ∖ { 𝑤 } ) ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) | |
| 46 | 44 45 | mpanl1 | ⊢ ( ( 𝑅 Fr 𝑦 ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ ) ) → ∃ 𝑢 ∈ ( 𝑥 ∖ { 𝑤 } ) ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) |
| 47 | ssrexv | ⊢ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑥 → ( ∃ 𝑢 ∈ ( 𝑥 ∖ { 𝑤 } ) ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) ) | |
| 48 | 42 46 47 | mpsyl | ⊢ ( ( 𝑅 Fr 𝑦 ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ ) ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) |
| 49 | 26 27 41 48 | syl12anc | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) |
| 50 | breq1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 𝑅 𝑢 ↔ 𝑧 𝑅 𝑢 ) ) | |
| 51 | 50 | notbid | ⊢ ( 𝑣 = 𝑧 → ( ¬ 𝑣 𝑅 𝑢 ↔ ¬ 𝑧 𝑅 𝑢 ) ) |
| 52 | 51 | rspcv | ⊢ ( 𝑧 ∈ ( 𝑥 ∖ { 𝑤 } ) → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ¬ 𝑧 𝑅 𝑢 ) ) |
| 53 | 39 52 | syl | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ¬ 𝑧 𝑅 𝑢 ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ¬ 𝑧 𝑅 𝑢 ) ) |
| 55 | simplr2 | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → 𝑧 𝑅 𝑤 ) | |
| 56 | simpll | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → 𝑅 Po 𝑥 ) | |
| 57 | simplr1 | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) | |
| 58 | simplr3 | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → 𝑤 ∈ 𝑥 ) | |
| 59 | simpr | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → 𝑢 ∈ 𝑥 ) | |
| 60 | potr | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ∧ 𝑢 ∈ 𝑥 ) ) → ( ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑢 ) → 𝑧 𝑅 𝑢 ) ) | |
| 61 | 56 57 58 59 60 | syl13anc | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑢 ) → 𝑧 𝑅 𝑢 ) ) |
| 62 | 55 61 | mpand | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑤 𝑅 𝑢 → 𝑧 𝑅 𝑢 ) ) |
| 63 | 62 | con3d | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ¬ 𝑧 𝑅 𝑢 → ¬ 𝑤 𝑅 𝑢 ) ) |
| 64 | vex | ⊢ 𝑤 ∈ V | |
| 65 | breq1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 𝑅 𝑢 ↔ 𝑤 𝑅 𝑢 ) ) | |
| 66 | 65 | notbid | ⊢ ( 𝑣 = 𝑤 → ( ¬ 𝑣 𝑅 𝑢 ↔ ¬ 𝑤 𝑅 𝑢 ) ) |
| 67 | 64 66 | ralsn | ⊢ ( ∀ 𝑣 ∈ { 𝑤 } ¬ 𝑣 𝑅 𝑢 ↔ ¬ 𝑤 𝑅 𝑢 ) |
| 68 | 63 67 | imbitrrdi | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ¬ 𝑧 𝑅 𝑢 → ∀ 𝑣 ∈ { 𝑤 } ¬ 𝑣 𝑅 𝑢 ) ) |
| 69 | 54 68 | syld | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ∀ 𝑣 ∈ { 𝑤 } ¬ 𝑣 𝑅 𝑢 ) ) |
| 70 | ralun | ⊢ ( ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ∧ ∀ 𝑣 ∈ { 𝑤 } ¬ 𝑣 𝑅 𝑢 ) → ∀ 𝑣 ∈ ( ( 𝑥 ∖ { 𝑤 } ) ∪ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) | |
| 71 | 70 | ex | ⊢ ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ( ∀ 𝑣 ∈ { 𝑤 } ¬ 𝑣 𝑅 𝑢 → ∀ 𝑣 ∈ ( ( 𝑥 ∖ { 𝑤 } ) ∪ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) ) |
| 72 | 69 71 | sylcom | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ∀ 𝑣 ∈ ( ( 𝑥 ∖ { 𝑤 } ) ∪ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) ) |
| 73 | difsnid | ⊢ ( 𝑤 ∈ 𝑥 → ( ( 𝑥 ∖ { 𝑤 } ) ∪ { 𝑤 } ) = 𝑥 ) | |
| 74 | 73 | raleqdv | ⊢ ( 𝑤 ∈ 𝑥 → ( ∀ 𝑣 ∈ ( ( 𝑥 ∖ { 𝑤 } ) ∪ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 75 | 58 74 | syl | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ∀ 𝑣 ∈ ( ( 𝑥 ∖ { 𝑤 } ) ∪ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 76 | 72 75 | sylibd | ⊢ ( ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ∧ 𝑢 ∈ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 77 | 76 | reximdva | ⊢ ( ( 𝑅 Po 𝑥 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ( ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 78 | 31 77 | sylan | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ( ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 79 | 49 78 | mpd | ⊢ ( ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) |
| 80 | 79 | 3exp2 | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 𝑅 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) ) |
| 81 | 80 | rexlimdv | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ( ∃ 𝑧 ∈ 𝑥 𝑧 𝑅 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) |
| 82 | 25 81 | biimtrid | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ( ∃ 𝑣 ∈ 𝑥 𝑣 𝑅 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) |
| 83 | ralnex | ⊢ ( ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑤 ↔ ¬ ∃ 𝑣 ∈ 𝑥 𝑣 𝑅 𝑤 ) | |
| 84 | breq2 | ⊢ ( 𝑢 = 𝑤 → ( 𝑣 𝑅 𝑢 ↔ 𝑣 𝑅 𝑤 ) ) | |
| 85 | 84 | notbid | ⊢ ( 𝑢 = 𝑤 → ( ¬ 𝑣 𝑅 𝑢 ↔ ¬ 𝑣 𝑅 𝑤 ) ) |
| 86 | 85 | ralbidv | ⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑤 ) ) |
| 87 | 86 | rspcev | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑤 ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) |
| 88 | 87 | expcom | ⊢ ( ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 89 | 83 88 | sylbir | ⊢ ( ¬ ∃ 𝑣 ∈ 𝑥 𝑣 𝑅 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 90 | 82 89 | pm2.61d1 | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ( 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 91 | difsn | ⊢ ( ¬ 𝑤 ∈ 𝑥 → ( 𝑥 ∖ { 𝑤 } ) = 𝑥 ) | |
| 92 | 48 | expr | ⊢ ( ( 𝑅 Fr 𝑦 ∧ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) → ( ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) ) |
| 93 | neeq1 | ⊢ ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ( ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ ↔ 𝑥 ≠ ∅ ) ) | |
| 94 | raleq | ⊢ ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ( ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) | |
| 95 | 94 | rexbidv | ⊢ ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ( ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ↔ ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 96 | 93 95 | imbi12d | ⊢ ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ( ( ( 𝑥 ∖ { 𝑤 } ) ≠ ∅ → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ ( 𝑥 ∖ { 𝑤 } ) ¬ 𝑣 𝑅 𝑢 ) ↔ ( 𝑥 ≠ ∅ → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) |
| 97 | 92 96 | syl5ibcom | ⊢ ( ( 𝑅 Fr 𝑦 ∧ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) → ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ( 𝑥 ≠ ∅ → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) |
| 98 | 97 | com23 | ⊢ ( ( 𝑅 Fr 𝑦 ∧ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) → ( 𝑥 ≠ ∅ → ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) |
| 99 | 98 | adantll | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ) → ( 𝑥 ≠ ∅ → ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) ) |
| 100 | 99 | impr | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ( ( 𝑥 ∖ { 𝑤 } ) = 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 101 | 91 100 | syl5 | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ( ¬ 𝑤 ∈ 𝑥 → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 102 | 90 101 | pm2.61d | ⊢ ( ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) ∧ ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) |
| 103 | 102 | ex | ⊢ ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) → ( ( ( 𝑥 ∖ { 𝑤 } ) ⊆ 𝑦 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 104 | 23 103 | biimtrid | ⊢ ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) → ( ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 105 | 104 | alrimiv | ⊢ ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) → ∀ 𝑥 ( ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) |
| 106 | df-fr | ⊢ ( 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ∀ 𝑣 ∈ 𝑥 ¬ 𝑣 𝑅 𝑢 ) ) | |
| 107 | 105 106 | sylibr | ⊢ ( ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) ∧ 𝑅 Fr 𝑦 ) → 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ) |
| 108 | 107 | ex | ⊢ ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → ( 𝑅 Fr 𝑦 → 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ) ) |
| 109 | 18 108 | sylcom | ⊢ ( ( 𝑅 Po 𝑦 → 𝑅 Fr 𝑦 ) → ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ) ) |
| 110 | 109 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( 𝑅 Po 𝑦 → 𝑅 Fr 𝑦 ) → ( 𝑅 Po ( 𝑦 ∪ { 𝑤 } ) → 𝑅 Fr ( 𝑦 ∪ { 𝑤 } ) ) ) ) |
| 111 | 3 6 9 12 14 110 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( 𝑅 Po 𝐴 → 𝑅 Fr 𝐴 ) ) |
| 112 | 111 | impcom | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 Fr 𝐴 ) |